全部 |
  • 全部
  • 题名
  • 关键词
  • NSTL主题词
  • 摘要
  • 会议名称
  • 论文-出处
  • 论文-作者
  • 论文-机构
  • 论文-DOI
  • 会议-出版者
  • 会议-出版地
  • 会议-主编
  • 会议-主办单位
  • 会议-举办地
  • ISSN
  • EISSN
  • ISBN
  • EISBN
检索 搜索会议录 二次检索 AI检索
外文文献 中文文献
筛选条件:

1. Large Language Models With Holistically Thought Could Be Better Doctors NSTL国家科技图书文献中心

Yixuan Weng |  Bin Li... -  《Natural Language Processing and Chinese Computing,Part II》 -  CCF International Conference on Natural Language Processing and Chinese Computing - 2025, - 319~332 - 共14页

摘要: fields, such as mathematics, logic, and commonsense QA |  (CQA) system aims at providing a series of | The medical conversational question answering |  professional medical services to improve the efficiency of |  medical care. Despite the success of large language
关键词: Large language model |  Medical conversational QA |  Holistically thought

2. Capturing Temporal Components for Time Series Classification NSTL国家科技图书文献中心

Venkata Ragavendra V... |  Ranjith Ramanathan... -  《Pattern Recognition,Part I》 -  International Conference on Pattern Recognition - 2025, - 215~230 - 共16页

摘要: series classification, the task of categorizing |  for time series classification. We demonstrate its |  available time series classification benchmarks | Analyzing sequential data is crucial in many |  domains, particularly due to the abundance of data
关键词: Time-series classification |  Temporal compositionality |  Time series segmentation

3. Semi-periodic Activation for Time Series Classification NSTL国家科技图书文献中心

Jose Gilberto Barbos... |  Andre Guarnier de Mi...... -  《Intelligent Systems,Part IV》 -  Brazilian Conference on Intelligent Systems - 2025, - 76~90 - 共15页

摘要: in time series tasks. It highlights the need to |  periodicity, for activation in time series neural networks |  for time series classification, obtaining the best | This paper investigates the lack of research |  on activation functions for neural network models
关键词: Time series |  Deep learning |  Activation function

4. Mining Rare Temporal Pattern in Time Series NSTL国家科技图书文献中心

Long Van Ho |  Nguyen Ho... -  《Databases Theory and Applications》 -  Australasian Database Conference - 2025, - 143~157 - 共15页

摘要:Time series data from various domains is |  patterns within these series can provide valuable |  Rare Temporal Pattern Mining from Time Series |  time series data as input and outputs rare temporal |  continuously growing, and extracting and analyzing temporal
关键词: Pattern mining |  Rare temporal patterns |  Time series

5. Auto-sktime: Automated Time Series Forecasting NSTL国家科技图书文献中心

Marc-Andre Zoller |  Marius Lindauer... -  《Learning and Intelligent Optimization》 -  International Conference on Learning and Intelligent Optimization - 2025, - 456~471 - 共16页

摘要:In today's data-driven landscape, time series |  series data, coupled with the expanding landscape of |  framework for automated time series forecasting. The |  series data. First, pipeline templates to account for | -world time series datasets demonstrate the
关键词: Automated machine learning |  Time series |  Forecasting

6. An Empirical Evaluation of DeepAR for Univariate Time Series Forecasting NSTL国家科技图书文献中心

Ricardo Urjais Gomes |  Carlos Soares... -  《Progress in Artificial Intelligence,Part III》 -  EPIA Conference on Artificial Intelligence - 2025, - 188~199 - 共12页

摘要:DeepAR is a popular probabilistic time series |  of related time series. For this reason, it is a | . We use 100 time series from the M4 competition to |  forecasting algorithm. According to the authors, DeepAR is |  particularly suitable to build global models using hundreds
关键词: Time series forecast |  Probabilistic forecast |  Deep time series

7. Bidirectional Dependency Representation Disentanglement for Time Series Classification NSTL国家科技图书文献中心

Tianren Zhao |  Hua Zuo... -  《AI 2024: Advances in Artificial Intelligence,Part I》 -  Australasian Joint Conference on Artificial Intelligence - 2025, - 98~110 - 共13页

摘要:Time series classification an important and | -stationary property of time series data hinders further |  time series classification that leverages the power |  challenging real-world problem and has been extensively |  studied by deep learning methods. However, the non
关键词: Time series classification |  Domain generalization

8. bSAX: A Novel Sketch for Efficient Data Series Similarity Search NSTL国家科技图书文献中心

Han Hu |  Jiye Qiu... -  《Database Systems for Advanced Applications,Part V》 -  International Conference on Database Systems for Advanced Applications |  International Workshop on Big Data Management and Service |  International Workshop on Graph Data Management and Analysis |  International Workshop on Big Data Quality Management |  Workshop on Emerging Results inData Science and Engineering - 2025, - 442~458 - 共17页

摘要:, data series similarity search holds great |  series indices for exact similarity search. The iSAX |  index for data series, with a cost model involving | In contemporary applications of data analysis |  significance. A substantial body of research design data
关键词: Similarity search |  Summarization |  Data series

9. Bitcoin Forecasting Using Deep Learning and Time Series Ensemble Techniques NSTL国家科技图书文献中心

Huma Zafar |  Stylianos Kapetanaki... -  《Artificial Intelligence XLI,Part I》 -  SGAI International Conference on Innovative Techniques and Applications of Artificial Intelligence - 2025, - 105~115 - 共11页

摘要:, comparing Time Series and Deep Learning models, evaluating |  reviewed existing studies on Deep Learning, Time Series |  with slightly higher errors. Time Series models were | This research investigates Bitcoin price |  prediction by reviewing the current state of the art
关键词: Blockchain |  Deep learning |  Time series

10. Structural and Semantic Data Layers in Time Series Analyses NSTL国家科技图书文献中心

Alexander Grass |  Christian Beecks... -  《Intelligent Data Engineering and Automated Learning - IDEAL 2024,Part I》 -  International Conference on Intelligent Data Engineering and Automated Learning - 2025, - 505~511 - 共7页

摘要: temporal data is crucial for effective time series |  levels range from entire time series collections down |  associated with time series data, including labels and |  time series approaches. To this end, we specify a |  compositions of time series data, while also defining
关键词: Time series |  Data analytics |  Knowledge discovery
检索条件series (mathematics)

NSTL主题词

  • NSTL学科导航