全部 |
  • 全部
  • 题名
  • 作者
  • 机构
  • 关键词
  • NSTL主题词
  • 摘要
检索 二次检索 AI检索
外文文献 中文文献
筛选条件:

1. Fast and Understandable Nonlinear Supervised Dimensionality Reduction NSTL国家科技图书文献中心

Anri Patron |  Rafael Savvides... -  《Discovery Science,Part I》 -  International Conference on Discovery Science - 2025, - 385~400 - 共16页

摘要: creation and dimensionality reduction are essential tasks |  unsupervised dimensionality reduction methods such as |  dimensionality reduction methods, such as canonical correlation |  dimensionality reduction method, called Gradient Boosting | . Still, typically, the dimensionality of these
关键词: Supervised dimensionality reduction |  Embedding |  Boosting |  Feature engineering

2. Fusion of data dimensionality reduction algorithms baced on category representation theory NSTL国家科技图书文献中心

Xiaoxiang Xu |  Fanzhang Li... -  《Fourth International Conference on Computer Vision,Application,and Algorithm (CVAA 2024)》 -  International Conference on Computer Vision,Application,and Algorithm - 2025, - 1348633.1~1348633.10 - 共10页

摘要: representation for data dimensionality reduction and provide a |  data dimensionality reduction fusion representation |  proposed a data dimensionality reduction fusion |  study the fusion representation of data dimensionality |  reduction. We propose the basic concept of category
关键词: Category representation |  Data dimensionality reduction |  Data dimensionality reduction fusion representation

3. Local Information in Global Optimization with Dimensionality Reduction Schemes NSTL国家科技图书文献中心

Dmitri E. Kvasov |  Vladimir A. Grishagi... -  《Numerical Computations,Part I》 -  International Conference on Numerical Computations: Theory and Algorithms - 2025, - 336~342 - 共7页

摘要: based on the dimensionality reduction approach |  framework of the dimensionality reduction schemes. | Numerical methods for continuous global |  optimization are investigated in this contribution. They are |  consisting in the extension of one-dimensional methods to
关键词: Lipschitz global optimization |  Dimensionality reduction |  Local information |  Acceleration of convergence

4. Deep Ensemble Transformers for Dimensionality Reduction NSTL国家科技图书文献中心

Maria Nareklishvili |  Marius Geitle -  《IEEE transactions on neural networks and learning systems》 - 2025,36(2) - 2091~2102 - 共12页

摘要:), a fast, scalable approach for dimensionality |  reduction problems. This method leverages the power of | We propose deep ensemble transformers (DETs |  deep neural networks and employs cascade ensemble |  techniques as its fundamental feature extraction tool. To
关键词: Transformers |  Random forests |  Ensemble learning |  Feature extraction |  Neural networks |  Artificial neural networks |  Dimensionality reduction

5. Scatterplot selection for dimensionality reduction in multidimensional data visualization NSTL国家科技图书文献中心

Kaya Okada |  Takayuki Itoh -  《Journal of visualization》 - 2025,28(1) - 205~221 - 共17页

摘要:Dimensionality reduction (DR) techniques for |  multidimensional data serve as powerful tools for visualization |  and understanding of the structure of the data | . Various DR methods have been developed to extract |  specific features of the data over the years. However
关键词: Dimensionality reduction |  Multidimensional data visualization |  Scatterplot |  Scatterplot selection |  Evaluation of dimensionality reduction |  Text data visualization

6. Entropic Semi-Supervised Dimensionality Reduction for Distance Metric Learning NSTL国家科技图书文献中心

Levada, Alexandre L.... -  《International journal of uncertainty, fuzziness and knowledge-based systems》 - 2025,33(2) - 219~234 - 共16页

摘要: dimensionality reduction are intrinsically related, since they | -Supervised Dimensionality Reduction (SSDR) algorithm that | Distance metric learning and nonlinear |  are both different perspectives of the same |  fundamental problem: to learn compact and meaningful data
关键词: Dimensionality reduction |  Semi supervised learning |  Statistical divergences |  Metric learning

7. Low-correlation multilinear dimensionality reduction applied to volcano-seismic classification NSTL国家科技图书文献中心

Peixoto, Antonio Aug... |  Fernandes, Carlos Al...... -  《Pattern Recognition》 - 2025,158 - 共12页

摘要:-Correlation Multilinear Dimensionality Reduction (LC-MDR |  the dimensionality of tensor data, called Low | In the present work, a technique for reducing | ), is proposed. The method optimizes a cost function |  that takes into account the data correlation
关键词: Dimensionality reduction |  Tensor decompositions |  Correlation |  Classification |  Seismic event

8. Quick Unsupervised Hyperspectral Dimensionality Reduction for Earth Observation: A Comparison NSTL国家科技图书文献中心

Daniela Lupu |  Joseph L. Garrett... -  《IEEE transactions on computational imaging》 - 2025,11 - 520~535 - 共16页

摘要:Dimensionality reduction can be applied to |  dimensionality reduction often provide the basis for more |  unsupervised dimensionality reduction algorithms are tested |  dimensionality reduction and give guidance regarding how to |  hyperspectral images so that the most useful data can be
关键词: Principal component analysis |  Dimensionality reduction |  Classification algorithms |  Hyperspectral imaging |  Object detection |  Covariance matrices |  Matrix decomposition |  Image reconstruction |  Accuracy |  Pipelines

9. Dimensionality Reduction with Proper Symplectic Decomposition for Learning Hamiltonian Dynamics NSTL国家科技图书文献中心

Janis Bajars -  《Numerical Computations,Part II》 -  International Conference on Numerical Computations: Theory and Algorithms - 2025, - 3~18 - 共16页

摘要: propose dimensionality reduction with the proper |  orthogonal decomposition (POD) dimensionality-reduced | Structure-preserving deep learning has |  recently received high attention, e.g., the development |  of the symplecticity-preserving neural networks
关键词: Hamiltonian dynamics |  Structure-preserving neural networks |  Symplectic dimensionality reduction |  Learning wave solutions

10. ITRMD: A Dimensionality Reduction Framework for Accurate and Efficient Multivariate KPI Anomaly Detection NSTL国家科技图书文献中心

Tianrun Gao |  Decheng Zuo... -  《Advanced Data Mining and Applications,Part IV》 -  International Conference on Advanced Data Mining and Applications - 2025, - 327~341 - 共15页

摘要:. Therefore, dimensionality reduction is important in MAD |  dimensionality reduction framework ITRMD, which reduces |  is called the "Curse of dimensionality", which | . However, there are few researches on dimensionality |  reduction methods specifically designed for MAD. In this
关键词: KPI |  Time-series |  Multivariate KPI anomaly detection |  Dimensionality reduction |  Outlier
检索条件dimensionality reduction
  • 检索词扩展

NSTL主题词

  • NSTL学科导航