全部 |
  • 全部
  • 题名
  • 作者
  • 机构
  • 关键词
  • NSTL主题词
  • 摘要
检索 二次检索 AI检索
外文文献 中文文献
筛选条件:

1. Dense capsule stacked auto-encoder model based DDoS attack detection and hybrid optimal bandwidth allocation with routing in VANET environment NSTL国家科技图书文献中心

Murali Krishna Tanat... |  Manimaran Ponnusamy -  《Vehicular Communications》 - 2025,52(Apr.) - 100888.1~100888.14 - 共14页

摘要: Capsule Stacked Auto Encoder (DCSAE) network is |  hybridization of the Capsule Network with a Stacked Auto |  Encoder. Moreover, the Improved Fire Hawks Optimization | The vehicle ad hoc network, or VANET, is a |  fantastic tool for smart transport since it improves
关键词: Artificial neuron |  Search space |  Back-propagation |  Dynamic networks |  Global best solution |  Exploitation and exploration |  Spiral model

2. Energy-efficient coverage in wireless sensor networks based on stacked contractive auto encoder with Manta Ray foraging optimisation algorithm NSTL国家科技图书文献中心

S. Muthukumarasamy |  B.R. Tapas Bapu -  《International journal of mobile communications》 - 2025,25(1) - 110~128 - 共19页

摘要: in WSN based on stacked contractive auto encoder | In this manuscript, energy-efficient coverage |  with Manta Ray foraging optimisation algorithm is |  proposed. Initially, IF-RFKM clustering approach is |  proposed for dividing the ROI as several clusters and
关键词: Manta Ray foraging optimisation |  region of interest |  stacked contractive auto encoder |  SCAE |  wireless sensor network

3. Improving the Accuracy of Community Detection in Social Network Through a Hybrid Method NSTL国家科技图书文献中心

Mahsa Nooribakhsh |  Marta Fernandez-Dieg...... -  《Social Networks Analysis and Mining,Part II》 -  International Conference on Advances in Social Networks Analysis and Mining - 2025, - 117~126 - 共10页

摘要: stacked auto-encoder (SAE) for dimensionality reduction | The inherent complexity of social networks in |  terms of topological properties requires sophisticated |  methodologies to detect communities or clusters. Community |  detection in social networks is essential for
关键词: Community detection |  Social networks |  Stacked auto-encoder |  Shuffled frog leaping algorithm

4. Domain Adaptive Coding Transfer Diagnosis Method and Its Application in Fault Diagnosis NSTL国家科技图书文献中心

Jiantao Lu |  Zhilin Xiao... -  《Proceedings of the TEPEN International Workshop on Fault Diagnostic and Prognostic,Volume 2》 -  TEPEN International Workshop on Fault Diagnostics and Prognostics - 2025, - 271~281 - 共11页

摘要: domain adaptive auto-encoder clustering module (DAACM |  (ASTNN). Firstly, in DAACM, a hybrid optimized stacked | It still remains a significant challenge for |  intelligent fault diagnosis of rolling bearings with |  unlabeled samples, and some transfer diagnosis methods
关键词: Intelligent fault diagnosis |  Stacked auto encoder |  Transfer learning |  Attention mechanism |  Domain adaptive

5. An Optimized Sequence for Sparse Channel Estimation in a 5G MIMO System NSTL国家科技图书文献中心

Chanchal Soni |  Namit Gupta -  《International Journal of Electronics》 - 2025,112(1/3) - 411~433 - 共23页

摘要: estimator with an enhanced stacked auto encoder (D-ESAE | ABSTRACT Recently, the massive Multiple-Input |  Multiple-Output (MIMO) system has been integrated with |  machine learning approaches to realise automatic channel |  state information detection. These methods need high
关键词: Massive MIMO-GFDM |  sensing matrix |  minimum mean square error |  Seagull optimization algorithm and additive white gaussian noise

6. Advancing sea level anomaly modeling in the black sea with LSTM Auto-Encoders: A novel approach NSTL国家科技图书文献中心

Yavuzdogan, A. |  Kayikci, E. Tanir -  《Ocean modelling》 - 2025,193 - 共17页

摘要: novel approach using an LSTM Auto-Encoder model |  effectively. We compared LSTM Auto-Encoder model performance |  results demonstrate that the LSTM Auto- Encoder model |  highlight the potential of the LSTM Auto-Encoder model as |  with that of a Stacked LSTM network, which learns
关键词: Sea level |  Black sea |  LSTM |  LSTM Auto-Encoder |  Anomaly modeling |  Deep learning

7. Building electrical load forecasting with occupancy data based on wireless sensing NSTL国家科技图书文献中心

Liu C. |  Xu Z.... -  《Applied energy》 - 2025,380(Feb.15) - 1.1~1.18 - 共18页

摘要: building, an improved stacked sparse auto-encoder (ISSAE | © 2024 Elsevier LtdBuilding electrical load |  forecasting, as a necessary foundation for building energy |  management, is of great significance for building energy |  efficiency and sustainable urban development. However, the
关键词: Building electrical load forecasting |  Data fusion |  Occupancy information |  Random vector functional link network |  Wireless signal sensing

8. A tool wear monitoring method based on data-driven and physical output NSTL国家科技图书文献中心

Yiyuan Qin |  Xianli Liu... -  《Robotics and Computer Integrated Manufacturing》 - 2025,91(Feb.) - 102820.1~102820.15 - 共15页 - 被引量:1

摘要: fused and downscaled using Stacked Sparse Auto-Encoder | In the process of metal cutting, realizing |  effective monitoring of tool wear is of great significance |  to ensure the quality of parts machining. To |  address the tool wear monitoring (TWM) problem, a tool
关键词: Data-driven |  Guidance |  Physical model |  Staged |  Tool wear monitoring

9. Bearing condition monitoring via an unsupervised and enhanced stacked auto-encoder NSTL国家科技图书文献中心

Xu, Fan |  Hao, Zhenyu... -  《Journal of the Brazilian Society of Mechanical Sciences and Engineering》 - 2024,46(6) - 367~ - 共12页

摘要: unsupervised stacked auto-encoder without an output label |  scatterplot (Lowess). That is, a stacked auto-encoder adds a |  auto-encoder (though only with an output layer) to | , such as stacked auto-encoders, stacked de-noising |  decoders at several hidden layers within a stacked noise
关键词: Deep learning |  Health indicator |  Bearing |  Stacked auto-encoder |  Local weighted regression |  Smoothing scatterplot |  PERFORMANCE DEGRADATION ASSESSMENT |  FAULT-DIAGNOSIS |  ROTATING MACHINERY |  SPECTRAL KURTOSIS...

10. Radar signal detection under low SNR using stacked auto-encoder and time-frequency domain features NSTL国家科技图书文献中心

Yuan Huang |  Tao Liu... -  《Third International Conference on Algorithms, Microchips, and Network Applications (AMNA 2024): 8-10 March 2024.Jinan, China》 -  International Conference on Algorithms, Microchips, and Network Applications - 2024, - 131711A.1~131711A.6 - 共6页

摘要: on stacked auto-encoder (SAE) and time-frequency | To improve radar signal detection accuracy of |  traditional methods under low SNR, a detection method based |  domain features is proposed. The time-domain features | , frequency-domain features and joint time-frequency domain
关键词: radar signal detection |  deep learning |  time-frequency domain features |  feature extraction
检索条件Stacked auto encoder
  • 检索词扩展

NSTL主题词

  • NSTL学科导航