全部 |
  • 全部
  • 题名
  • 作者
  • 机构
  • 关键词
  • NSTL主题词
  • 摘要
检索 二次检索 AI检索
外文文献 中文文献
筛选条件:

1. Customizing Spatial-Temporal Graph Mamba Networks for Pandemic Forecasting NSTL国家科技图书文献中心

Haowei Xu |  Chao Gao... -  《PRICAI 2024,Part I》 -  Pacific Rim International Conference on Artificial Intelligence - 2025, - 236~242 - 共7页

摘要: previous studies used spatiotem-poral and graph |  architecture search framework utilizing bidirectional Graph |  Mamba Networks. We construct a graph where nodes | The global spread of COVID-19 has emphasized |  the need for accurate pandemic prediction. While
关键词: Pandemic forecasting |  Spatial-temporal graph representation learning |  Mamba |  Neural architecture search

2. Cluster-guided denoising graph auto-encoder for enhanced traffic data imputation and fault detection NSTL国家科技图书文献中心

Yongcan Huang |  Hao Zhen... -  《Expert Systems with Application》 - 2025,261(Feb.) - 125531.1~125531.17 - 共17页

摘要: spatial-temporal context leveraged by the model. |  graph auto-encoder (DA-GAE) to identify clusters of |  clusters, a cluster-guided denoising graph auto-encoder |  reconstruction. The CG-DGAE employs a diffusion graph | In an era of increasing digitalization, the
关键词: Graph Representation Learning |  Graph Auto-Encoder |  Dual Encoding Attention |  Data Imputation |  Fault Detection |  Spatial-Temporal Context |  Traffic Sensor Clustering

3. A Spatial-Temporal Graph Convolutional Network for Video-Based Group Emotion Recognition NSTL国家科技图书文献中心

Xingzhi Wang |  Tao Chen... -  《Pattern Recognition,Part XIII》 -  International Conference on Pattern Recognition - 2025, - 339~354 - 共16页

摘要:. Specifically, we construct a spatial-temporal graph with | -temporal characteristics via efficient deep learning |  the spatial-temporal interactive characteristics |  relationships within a group in spatial and temporal | -temporal representation for GER. We fuse the decisions
关键词: Spatial-temporal graph |  Group emotion recognition |  Graph attention network

4. Next Point-of-Interest Recommendation With Adaptive Graph Contrastive Learning NSTL国家科技图书文献中心

Xuan Rao |  Renhe Jiang... -  《IEEE Transactions on Knowledge and Data Engineering》 - 2025,37(3) - 1366~1379 - 共14页

摘要: graph-based contrastive learning, which encourages the |  mechanism to integrate spatial-temporal information into |  an adaptive graph from user trajectories and |  compute POI representations using graph neural networks |  (GNNs). However, a single graph cannot capture the
关键词: Adaptation models |  Trajectory |  Accuracy |  Contrastive learning |  Transformers |  Vectors |  Symbols |  Frequency measurement |  Data augmentation |  Correlation

5. A Dynamic SpatialTemporal Subgraph Convolutional Network for Noncontact Fault Diagnosis NSTL国家科技图书文献中心

Cao, Yu |  Chen, Yongyi... -  《IEEE Transactions on Instrumentation and Measurement》 - 2025,74(Pt.1) - 3504711.1~3504711.11 - 共11页

摘要: methods struggle to capture the spatial-temporal |  spatial-temporal subgraph convolutional network (DSTSGCN |  enhanced by fusing multisignal spatial-temporal | Voiceprint recognition based on deep learning | . Additionally, the existing voiceprint graph construction
关键词: Spectrogram |  Fault diagnosis |  Feature extraction |  Correlation |  Convolution |  Vibrations |  Graph convolutional networks |  Heuristic algorithms |  Accuracy |  Nearest neighbor methods...

6. Spatio-Temporal Heterogeneous Graph Neural Network With Multi-view Learning For Traffic Prediction NSTL国家科技图书文献中心

Liting Song |  Qianqian Ren... -  《Pattern Recognition,Part VII》 -  International Conference on Pattern Recognition - 2025, - 35~52 - 共18页

摘要: representation ability for modeling spatial and temporal |  predicting methods, graph learning-based models attract |  Heterogeneous Graph Neural Network With Multi-View Learning |  dependencies with graph neural networks. Despite their | -temporal correlations of traffic data are complex and
关键词: Traffic prediction |  Multi-view |  Graph convolution |  Graph learning

7. HydroVision: LiDAR-Guided Hydrometric Prediction with Vision Transformers and Hybrid Graph Learning NSTL国家科技图书文献中心

Naghmeh Shafiee Roud... |  Ursula Eicker... -  《Advances in Visual Computing,Part II》 -  International Symposium on Visual Computing - 2025, - 134~147 - 共14页

摘要: literature. We propose a hybrid graph learning structure |  that combines static and dynamic graph learning. A |  a dynamic graph adapts to temporal changes | , improving the overall graph representation. We apply graph |  patches, efficiently captures spatial features of
关键词: Vision transformer |  Graph learning |  Hydrometric forecasting

8. Dynamic mode decomposition and short-time prediction of PM2.5 using the graph Neural Koopman network NSTL国家科技图书文献中心

Yuhan Yu |  Hongye Zhou... -  《International journal of geographical information science》 - 2025,39(1/2) - 277~300 - 共24页

摘要: Learning (SPCL) model utilizing a graph representation |  Koopman theory and deep learning often neglect spatial |  learning method was proposed to combine the graph | -Term Memory Networks, Spatio-Temporal Graph |  modes. Furthermore, a Spatial Physics Constrained
关键词: Spatiotemporal prediction |  deep Koopman |  physics-constrained learning framework |  Koopman pattern decomposition |  PM2.5

9. Hierarchical Spatial-Temporal Graph-Enhanced Model for Map-Matching NSTL国家科技图书文献中心

Anjun Gao |  Zhenglin Wan... -  《Databases Theory and Applications》 -  Australasian Database Conference - 2025, - 44~57 - 共14页

摘要:: hierarchical self-supervised learning and spatial-temporal |  of spatial-temporal relationships, and |  Graph to dynamically capture spatial relationships |  incorporate a Spatial-Temporal Factor to extract relevant | -based methods, recent works in deep learning for
关键词: Map-matching |  Spatial-temporal trajectories |  Machine learning

10. Variational Graph Attention Networks With Self-Supervised Learning for Multivariate Time Series Anomaly Detection NSTL国家科技图书文献中心

Gao, Yu |  Qi, Jin... -  《IEEE Transactions on Instrumentation and Measurement》 - 2025,74(Pt.1) - 3503113.1~3503113.13 - 共13页

摘要: learning (VGATSL). We use stacked spatial-temporal graph |  challenging to capture spatial-temporal relationships |  variational graph attention networks with self-supervised |  attention (STGAT) networks to capture the temporal and |  places latent representation on the surface of a unit
关键词: Anomaly detection |  Feature extraction |  Time series analysis |  Data models |  Sun |  Self-supervised learning |  Transfer learning |  Training |  Predictive models |  Monitoring...
检索条件Spatial-temporal graph representation learning

NSTL主题词

  • NSTL学科导航