全部 |
  • 全部
  • 题名
  • 关键词
  • NSTL主题词
  • 摘要
  • 会议名称
  • 论文-出处
  • 论文-作者
  • 论文-机构
  • 论文-DOI
  • 会议-出版者
  • 会议-出版地
  • 会议-主编
  • 会议-主办单位
  • 会议-举办地
  • ISSN
  • EISSN
  • ISBN
  • EISBN
检索 搜索会议录 二次检索 AI检索
外文文献 中文文献
筛选条件:

1. SCOMatch: Alleviating Overtrusting in Open-Set Semi-supervised Learning NSTL国家科技图书文献中心

Zerun Wang |  Liuyu Xiang... -  《Computer Vision - ECCV 2024,Part LI》 -  European Conference on Computer Vision - 2025, - 217~233 - 共17页

摘要:Open-set semi-supervised learning (OSSL |  classes, for semi-supervised learning (SSL). Prior OSSL | ) leverages practical open-set unlabeled data, comprising |  both in-distribution (ID) samples from seen classes |  and out-of-distribution (OOD) samples from unseen
关键词: Open-set problem |  Semi-supervised learning

2. Full-Body Human De-lighting with Semi-supervised Learning NSTL国家科技图书文献中心

Joshua Weir |  Junhong Zhao... -  《Computer Vision - ACCV 2024,Part I》 -  Asian Conference on Computer Vision - 2025, - 165~181 - 共17页

摘要: novel semi-supervised deep learning method to |  applications. While recent advancements in deep learning | Removing undesired shading from human images |  is crucial in supporting various real-world | -based methods show promise in addressing this
关键词: De-lighting |  Full-body |  Semi-supervised learning

3. ProSub: Probabilistic Open-Set Semi-supervised Learning with Subspace-Based Out-of-Distribution Detection NSTL国家科技图书文献中心

Erik Wallin |  Lennart Svensson... -  《Computer Vision - ECCV 2024,Part LXI》 -  European Conference on Computer Vision - 2025, - 129~147 - 共19页

摘要:In open-set semi-supervised learning (OSSL | ), we consider unlabeled datasets that may contain |  unknown classes. Existing OSSL methods often use the |  softmax confidence for classifying data as in | -distribution (ID) or out-of-distribution (OOD). Additionally
关键词: Open-set semi-supervised learning

4. Improving 3D Semi-supervised Learning by Effectively Utilizing All Unlabelled Data NSTL国家科技图书文献中心

Sneha Paul |  Zachary Patterson... -  《Computer Vision - ECCV 2024,Part LXVI》 -  European Conference on Computer Vision - 2025, - 55~71 - 共17页

摘要:Semi-supervised learning (SSL) has shown its |  unlabelled data. Traditional semi-supervised approaches |  effectiveness in learning effective 3D representation from a |  the learning process. However, we identify that the |  such samples, (2) an inverse learning module that
关键词: Semi-supervised learning |  Point cloud |  3D vision

5. Flexible Distribution Alignment: Towards Long-Tailed Semi-supervised Learning with Proper Calibration NSTL国家科技图书文献中心

Emanuel Sanchez Aima... |  Nathaniel Helgesen... -  《Computer Vision - ECCV 2024,Part LIV》 -  European Conference on Computer Vision - 2025, - 307~327 - 共21页

摘要:Long-tailed semi-supervised learning (LTSSL | ) represents a practical scenario for semi-supervised | -supervised learning. Our code is available at https |  ImageNet127, addressing class imbalance challenges in semi |  applications, challenged by skewed labeled distributions that
关键词: Distribution alignment |  Confidence calibration |  Long-tailed |  Semi-supervised learning

6. All-Weather Vehicle Detection and Classification with Adversarial and Semi-Supervised Learning NSTL国家科技图书文献中心

Yi-Chao Huang |  Huei-Yung Lin -  《Pattern Recognition,Part XVII》 -  International Conference on Pattern Recognition - 2025, - 330~345 - 共16页

摘要: semi-supervised learning framework is incorporated to |  learning to ensure the features extracted from a similar |  learning technique outperforms the recent traffic scene | The images taken under varying lighting or |  adverse weather conditions exhibit different
关键词: All weather object detection |  Adversarial learning |  Semi-Supervised learning

7. ExMatch: Self-guided Exploitation for Semi-supervised Learning with Scarce Labeled Samples NSTL国家科技图书文献中心

Noo-ri Kim |  Jin-Seop Lee... -  《Computer Vision - ECCV 2024,Part LXXXV》 -  European Conference on Computer Vision - 2025, - 125~142 - 共18页

摘要:Semi-supervised learning is a learning method |  labeled samples, semi-supervised learning methods showed |  semi-supervised learning. In the training process |  samples using self-supervised models and utilize it for |  distribution and resist learning from incorrect pseudo-labels
关键词: Semi-supervised learning |  Scarce labeled samples |  Self-guided exploitation |  Confirmation bias

8. Rebalancing Using Estimated Class Distribution for Imbalanced Semi-supervised Learning Under Class Distribution Mismatch NSTL国家科技图书文献中心

Taemin Park |  Hyuck Lee... -  《Computer Vision - ECCV 2024,Part XXII》 -  European Conference on Computer Vision - 2025, - 388~404 - 共17页

摘要:-imbalanced semi-supervised learning (CISSL), many existing | Despite significant advancements in class |  algorithms explicitly or implicitly assume that the class |  distribution of unlabeled data matches that of labeled data | . However, when this assumption fails in practice, the
关键词: Class-imbalanced semi-supervised learning |  Long-tailed learning |  Auxiliary balanced classifier

9. Essay Coherence Evaluation and Feedback Enhanced by Semi-supervised Learning and Auxiliary Information NSTL国家科技图书文献中心

Chenyang Li |  Long Zhang... -  《Natural Language Processing and Chinese Computing,Part V》 -  CCF International Conference on Natural Language Processing and Chinese Computing - 2025, - 312~321 - 共10页

摘要: generated through semi-supervised learning and information | According to the grading standards for middle |  school examinations, thought content and structural |  coherence are critical indicators of essay quality | . Evaluating an essay's coherence requires not only analyzing
关键词: Essay quality assessment |  Semi-Supervised learning |  Large language models |  Auxiliary data

10. Self-training Based Semi-Supervised Learning and U-Net with Denoiser for Teeth Segmentation in X-Ray Image NSTL国家科技图书文献中心

Zhouhao Lin |  Yibo Yang... -  《Semi-supervised Tooth Segmentation》 -  MICCAI Challenge on Semi-supervised Tooth Segmentation |  International Conference on Medical Image Computing and Computer Assisted Intervention - 2025, - 124~132 - 共9页

摘要:Segmentation of X-ray images of teeth plays an |  important role in dental diagnosis. However, the labeling |  information is expensive, and it is of great significance to |  effectively use the unlabeled images to improve the |  segmentation performance. In order to make full use of
关键词: Semi-supervised learning |  Teeth segmentation |  Denoiser |  Hard augmentation
检索条件Semi-supervised Learning
  • 检索词扩展

NSTL主题词

  • NSTL学科导航