全部 |
  • 全部
  • 题名
  • 作者
  • 机构
  • 关键词
  • NSTL主题词
  • 摘要
检索 二次检索 AI检索
外文文献 中文文献
筛选条件:

1. Attention-Challenging Multiple Instance Learning for Whole Slide Image Classification NSTL国家科技图书文献中心

Yunlong Zhang |  Honglin Li... -  《Computer Vision - ECCV 2024,Part LIII》 -  European Conference on Computer Vision - 2025, - 125~143 - 共19页

摘要:In the application of Multiple Instance |  Learning (MIL) methods for Whole Slide Image (WSI |  concentration. Firstly, UMAP of instance features reveals | . To remedy this, we introduce Multiple Branch |  using multiple attention branches. Secondly, the
关键词: Computational pathology |  Whole slide image |  Multiple instance learning |  Overfitting

2. cDP-MIL: Robust Multiple Instance Learning via Cascaded Dirichlet Process NSTL国家科技图书文献中心

Yihang Chen |  Tsai Hor Chan... -  《Computer Vision - ECCV 2024,Part LIV》 -  European Conference on Computer Vision - 2025, - 232~250 - 共19页

摘要:Multiple instance learning (MIL) has been |  framework for multiple instance learning, which adopts a |  approximate the true feature distribution of each instance |  instance-to-bag characteristic of the WSIs. We perform | , which imposes a natural regularization on learning to
关键词: Multiple instance learning |  Whole slide images |  Bayesian nonparametric method |  Uncertainty estimation

3. DGR-MIL: Exploring Diverse Global Representation in Multiple Instance Learning for Whole Slide Image Classification NSTL国家科技图书文献中心

Wenhui Zhu |  Xiwen Chen... -  《Computer Vision - ECCV 2024,Part XXXVIII》 -  European Conference on Computer Vision - 2025, - 333~351 - 共19页

摘要:Multiple instance learning (MIL) stands as a |  learning paradigm. Specifically, the positive instance |  powerful approach in weakly supervised learning |  of all instances. First, we turn the instance |  correlation into the similarity between instance embeddings
关键词: Weakly-supervised learning |  Multiple instance learning |  Histological whole slide image |  Transformer

4. Multi-center Ovarian Tumor Classification Using Hierarchical Transformer-Based Multiple-Instance Learning NSTL国家科技图书文献中心

Cris H. B. Claessens |  Eloy W. R. Schultz... -  《Cancer Prevention, Detection, and Intervention》 -  International Workshop on Cancer Prevention through Early Detection |  International Conference on Medical Image Computing and Computer Assisted Intervention - 2025, - 3~13 - 共11页

摘要: multiple-instance learning (MIL) and hierarchical self |  methods and other deep learning approaches, the | Malignant ovarian tumors (OTs) are a leading |  cause of gynecological cancer deaths, and often remain |  asymptomatic until advanced stages, making early and accurate
关键词: Ovarian cancer |  Computer-aided diagnosis |  Self-supervised learning |  Multiple-instance learning |  Vision transformer |  External validation

5. Deep multiple instance learning on heterogeneous graph for drug–disease association prediction NSTL国家科技图书文献中心

Gu Y. |  Zheng S.... -  《Computers in Biology and Medicine》 - 2025,184 - 109403~109403 - 共14页

摘要: this end, we introduce deep multiple instance | -end frameworks for path instance-level |  representation learning as well as the further feature |  learning into drug repositioning by proposing a novel |  generator in MilGNet to obtain multiple meta-path
关键词: Drug repositioning |  Drug–disease association prediction |  Heterogeneous graph neural network |  Meta-path |  Multiple instance learning

6. Controlling false positives in multiple instance learning: The "c-rule" approach NSTL国家科技图书文献中心

Delgado, Rosario -  《International journal of approximate reasoning》 - 2025,179(Apr.) - 1.1~1.23 - 共23页

摘要: labeling bags in binary Multiple Instance Learning (MIL |  approach addresses errors in instance labeling by |  misclassifying a negative instance. This trend is further | This paper introduces a novel strategy for | ) under the standard MI assumption. The proposed
关键词: Multiple Instance Learning (MIL) |  Standard MI assumption |  False positive rate |  False negative rate |  LOGISTIC-REGRESSION

7. Refining Multiple Instance Learning with Attention Regularization for Whole Slide Image Classification NSTL国家科技图书文献中心

Ilan Carretero |  Pablo Meseguer... -  《Intelligent Data Engineering and Automated Learning - IDEAL 2024,Part I》 -  International Conference on Intelligent Data Engineering and Automated Learning - 2025, - 398~409 - 共12页

摘要: multiple instance learning (MIL) problem where only slide | Histopathological analysis of biopsy sections |  is crucial for the detection of cancer and the |  distinction between different tumor subtypes. To this end | , pathologists identify certain key regions of the biopsy from
关键词: Hispathology imaging |  Multiple instance learning |  Attention mechanisms |  Attention regularization |  Explainable deep learning

8. Multiple-Instance Learning for thyroid gland disease classification: A hands-on experience NSTL国家科技图书文献中心

Lysukhin D. |  Varlamov A.... -  《Computers in Biology and Medicine》 - 2025,184 - 109424~109424 - 共9页

摘要: datasets. Our study demonstrates that a Multiple-Instance |  evaluating multiple whole slide images (WSIs) from a single |  investigates the development of machine learning models using |  Learning (MIL) model, trained on a weak patient-level | © 2024 Elsevier LtdThe morphological diagnosis
关键词: Artificial intelligence |  Histopathology |  Multiple Instance Learning |  Thyroid cancer |  Whole-slide images

9. Entity-level multiple instance learning for mesoscopic histopathology images classification with Bayesian collaborative learning and pathological prior transfer NSTL国家科技图书文献中心

He, Qiming |  Xu, Yingming... -  《Computerized Medical Imaging and Graphics》 - 2025,121 - 102495~102495 - 共12页

摘要: instances for multiple instance learning. This restricts |  a novel entity-level multiple instance learning |  proposed entity-level multiple instance learning enables |  features, Bayesian collaborative learning is proposed to |  construct co-optimization of instance and bag embedding
关键词: Pathology |  Glomerular lesion pattern |  Multiple instance learning |  Mixup |  Bayesian collaborative learning

10. Positional encoding-guided transformer-based multiple instance learning histopathology whole slide images classification NSTL国家科技图书文献中心

Shi, Jun |  Sun, Dongdong... -  《Computer Methods and Programs in Biomedicine》 - 2025,258 - 108491~108491 - 共14页

摘要: multiple instance learning (PEGTB-MIL) method for |  attention. As the most representative, multiple instance |  learning (MIL) generally aggregates the predictions or | Background and objectives: Whole slide image |  (WSI) classification is of great clinical
关键词: Digital pathology |  Whole slide image |  Multiple instance learning |  Position encoding |  Cancer subtyping |  Gene mutation prediction
检索条件Multiple instance learning
  • 检索词扩展

NSTL主题词

  • NSTL学科导航