全部 |
  • 全部
  • 题名
  • 作者
  • 机构
  • 关键词
  • NSTL主题词
  • 摘要
检索 二次检索 AI检索
外文文献 中文文献
筛选条件:

1. Global reduction for geo-distributed MapReduce across cloud federation NSTL国家科技图书文献中心

Thouraya Gouasmi |  Ahmed Hadj Kacem -  《Future generations computer systems》 - 2025,162(Jan.) - 107492.1~107492.12 - 共12页

摘要: MapReduce-based framework across federated cloud based on | , we propose an exact MapReduce scheduling model for | Geo-distributed Bigdata processing is |  increasing day by day, resulting in the origins of data |  that are geographically distributed in different
关键词: MapReduce |  Cloud federation |  BigData |  Geo-distributed scheduling |  Cost optimization

2. STORM: A MapReduce Framework for Symbolic Time Intervals Series Classification NSTL国家科技图书文献中心

OMER DAVID HAREL |  ROBERT MOSKOVITCH -  《ACM transactions on knowledge discovery from data》 - 2025,19(1) - 3.1~3.54 - 共54页

摘要: introduce STORMa novel, generic MapReduce framework for | Symbolic Time Intervals (STIs) represent |  events having a non-zero time duration, which are |  common in various application domains. In this article | , we focus on the challenge of STIs series
关键词: Symbolic Time Intervals |  Classification |  MapReduce |  Rocket |  LSTM

3. Rapid and optimized parallel attribute reduction based on neighborhood rough sets and MapReduce NSTL国家科技图书文献中心

V. K. Hanuman Turaga |  Srilatha Chebrolu -  《Expert Systems with Application》 - 2025,260(Jan.) - 125323.1~125323.18 - 共18页

摘要:Attribute reduction is a crucial step in data |  pre-processing and feature engineering. It is the |  selection of a subset of relevant data attributes to |  reduce the computational complexity of machine learning |  models and improve their performance. Neighborhood
关键词: Attribute reduction |  Neighborhood rough sets |  MapReduce |  Neighborhood information |  Data preprocessing |  Computational complexity |  High-dimensional data

4. Hybrid jellyfish search sine cosine optimisation-based deep learning for big data classification using MapReduce framework on epileptic seizure data NSTL国家科技图书文献中心

Jamunadevi Chandrase... |  Arul Ponnusamy -  《International journal of intelligent information and database systems》 - 2025,17(1) - 1~31 - 共31页

摘要: MapReduce framework on epileptic seizure data is proposed |  a MapReduce framework, wherein the mapper phase is | The increase in the amount of big data with |  the technical advances makes the traditional |  software tools face difficulties and unable to handle
关键词: deep embedded clustering |  DEC |  jellyfish search sine cosine algorithm |  JSCS |  deep long short-term memory |  big data classification |  epileptic seizure detection

5. Optimizing Geo-Distributed Data Processing with Resource Heterogeneity over the Internet NSTL国家科技图书文献中心

SAEED MIRPOUR MARZUN... |  ADEL TOOSI... -  《ACM Transactions on Internet Technology》 - 2025,25(1) - 5~ - 共28页

摘要:The traditional MapReduce frameworks were |  MapReduce operations adds unnecessary complexity. To | -MapReduce (ECMR), a framework that integrates resource |  heterogeneity and network links in geo-distributed MapReduce |  originally designed for processing data within a single
关键词: MapReduce |  Geo-distributed data |  Data centers |  Big data |  Multi-cluster

6. TEE-MR: Developer-friendly data oblivious programming for trusted execution environments NSTL国家科技图书文献中心

A.K.M. Mubashwir Ala... |  Keke Chen -  《Computers & Security》 - 2025,148(Jan.) - 104119.1~104119.15 - 共15页

摘要: oblivious TEE with MapReduce (TEE-MR) approach that uses | . We have implemented the approach with the MapReduce | Trusted execution environments (TEEs) enable |  efficient protection of integrity and confidentiality for |  applications running on untrusted platforms. They have been
关键词: TEE |  SGX |  MapReduce |  Data analytics |  Dataflow |  Access patterns |  ORAM

7. HEDAS: Secure and Efficient Distributed OLAP Using Fully Homomorphic Encryption NSTL国家科技图书文献中心

Yu Tian |  Tianxiang Shen... -  《Computer Security,Part I》 -  European Symposium on Research in Computer Security |  International Workshop on Data Privacy Management |  International Workshop on Cryptocurrencies and Blockchain Technology |  International Workshop on the Security of Industrial Control Systems and of Cyber-Physical Systems - 2025, - 77~93 - 共17页

摘要: machines, inspired by the MapReduce model, to reduce end |  leveraging the MapReduce model, Hedas effectively | The popularity of cloud computing has |  revolutionized Online Analytical Processing (OLAP), yet risks |  of privacy leakage limit the use of public clouds
关键词: Fully homomorphic encryption (FHE) |  Online analytical processing (OLAP) |  MapReduce

8. Modelling of healthcare data analytics using optimal machine learning model in big data environment NSTL国家科技图书文献中心

Chelladurai Fancy |  Nagappan Krishnaraj... -  《Expert systems》 - 2025,42(1) - e13612.1~e13612.15 - 共15页

摘要: uses Hadoop MapReduce environment. In addition, the | Recent advances in wireless networking, big |  data technologies, namely Internet of Things (IoT) 5G |  networks, health care big data analytics, and other |  technologies in artificial intelligence (AI) and wearables
关键词: big data |  disease diagnosis |  feature selection |  Hadoop MapReduce |  healthcare |  machine learning

9. Intelligent decision-making framework for big data using enhanced honey badger-based adaptive hybrid deep learning network NSTL国家科技图书文献中心

Kavitha, D. |  Chinnasamy, A.... -  《International journal of data mining and bioinformatics》 - 2025,29(1/2) - 193~222 - 共31页

摘要:By utilising the conventional models, it is |  also consuming more time for processing. Hence, there |  is a crucial requirement for real-world application |  over big data procedures to perform a scalable and |  effective solution. For the experimentation, input data is
关键词: decision making |  big data |  enhanced honey badger algorithm |  adaptive cascaded long short-term memory |  auto-encoder |  MapReduce framework

10. Stateful MapReduce Framework for mRMR Feature Selection Using Horizontal Partitioning NSTL国家科技图书文献中心

Vivek Yelleti |  P. S. V. S. Sai Pras... -  《Pattern Recognition and Machine Intelligence: 9th International Conference, PReMI 2021, Kolkata, India, December 15-18, 2021, Proceedings》 -  International Conference on Pattern Recognition and Machine Intelligence - 2024, - 317~327 - 共11页

摘要: distributed/parallel algorithms. MapReduce solutions are |  existing Horizontal MapReduce approaches for mRMR feature |  partitioning based MapReduce solutions namely HMR_mRMR, is an |  Iterative MapReduce algorithms and is designed under | Feature selection (FS) is an important pre
关键词: Feature selection |  MRMR |  Big data |  Horizontal partitioning |  MapReduce |  Iterative mapReduce
检索条件MapReduce
  • 检索词扩展

NSTL主题词

  • NSTL学科导航