全部 |
  • 全部
  • 题名
  • 作者
  • 机构
  • 关键词
  • NSTL主题词
  • 摘要
检索 二次检索 AI检索
外文文献 中文文献
筛选条件:

1. Versatile Incremental Learning: Towards Class and Domain-Agnostic Incremental Learning NSTL国家科技图书文献中心

Min-Yeong Park |  Jae-Ho Lee... -  《Computer Vision - ECCV 2024,Part XXXI》 -  European Conference on Computer Vision - 2025, - 271~288 - 共18页

摘要:Incremental Learning (IL) aims to accumulate |  scenario, named Versatile Incremental Learning (VIL), in | , named Incremental Classifier with Adaptation Shift |  effectively. Moreover, we introduce an Incremental |  knowledge from sequential input tasks while overcoming
关键词: Incremental learning |  Real-world scenario |  Adaptation control |  Incremental classifier

2. Future-proofing class-incremental learning NSTL国家科技图书文献中心

Quentin Jodelet |  Xin Liu... -  《Machine Vision and Applications》 - 2025,36(1) - 16.1~16.16 - 共16页

摘要:Exemplar-free class incremental learning is a |  available during the first incremental step. To overcome | -the-art methods for exemplar-free class incremental |  learning, especially in the most difficult settings where |  the first incremental step only contains few classes
关键词: Class incremental learning |  Continual learning |  Image classification |  Image generation

3. Adaptive Decoupled Prompting for Class Incremental Learning NSTL国家科技图书文献中心

Fanhao Zhang |  Shiye Wang... -  《Pattern Recognition and Computer Vision,Part IX》 -  Chinese Conference on Pattern Recognition and Computer Vision - 2025, - 554~568 - 共15页

摘要: for Class Incremental Learning) in comparison to the |  related class-incremental learning methods. | Continual learning has garnered significant |  adaptive decoupled prompting method for class incremental |  learning. Specifically, we design an adaptive prompt
关键词: Prompt learning |  Incremental learning |  Catastrophic forgetting

4. PILoRA: Prototype Guided Incremental LoRA for Federated Class-Incremental Learning NSTL国家科技图书文献中心

Haiyang Guo |  Fei Zhu... -  《Computer Vision - ECCV 2024,Part LXV》 -  European Conference on Computer Vision - 2025, - 141~159 - 共19页

摘要: view incremental learning as the process of learning | Existing federated learning methods have |  effectively dealt with decentralized learning in scenarios |  PILoRA. On the one hand, we adopt prototype learning to |  LoRA parameters. Accordingly, we propose Incremental
关键词: Federated learning |  Class incremental learning

5. Federated Incremental Learning algorithm based on Topological Data Analysis NSTL国家科技图书文献中心

Hu, Kai |  Gong, Sheng... -  《Pattern Recognition》 - 2025,158 - 共14页

摘要: incremental learning is an adaptive machine learning method |  Incremental Learning (FIL) algorithms brings together their |  incremental learning still faces two main challenges: (1 | % respectively for the federated incremental learning model | Federated learning is a distributed learning
关键词: Federated learning |  Incremental learning |  Topological Data Analysis

6. DiffClass: Diffusion-Based Class Incremental Learning NSTL国家科技图书文献中心

Zichong Meng |  Jie Zhang... -  《Computer Vision - ECCV 2024,Part LXXXVII》 -  European Conference on Computer Vision - 2025, - 142~159 - 共18页

摘要:Class Incremental Learning (CIL) is |  enhance model stability during incremental training |  challenging due to catastrophic forgetting. On top of that | , exemplar-free CIL is even more challenging due to |  forbidden access to data of previous tasks. Recent
关键词: Class incremental learning |  Exemplar free |  Diffusion model

7. iNeMo: Incremental Neural Mesh Models for Robust Class-Incremental Learning NSTL国家科技图书文献中心

Tom Fischer |  Yaoyao Liu... -  《Computer Vision - ECCV 2024,Part LXXVII》 -  European Conference on Computer Vision - 2025, - 357~374 - 共18页

摘要: the first incremental learning approach for pose |  learning models only initially and on fixed datasets. A |  property in a continual learning setting, we propose |  incremental neural mesh models that can be extended with new | Different from human nature, it is still
关键词: Class-incremental learning |  3D pose estimation

8. SRIL: Selective Regularization for Class-Incremental Learning NSTL国家科技图书文献中心

Jisu Han |  Jaemin Na... -  《Computer Vision - ACCV 2024,Part VIII》 -  Asian Conference on Computer Vision - 2025, - 351~367 - 共17页

摘要:-Incremental Learning aims to create an integrated model that |  lifespan. However, deep learning models suffer from a |  and enable exploratory learning. We validate the | Human intelligence gradually accepts new |  information and accumulates knowledge throughout the
关键词: Class incremental learning |  Knowledge distillation |  Weight interpolation

9. Adaptive Knowledge Matching for Exemplar-Free Class-Incremental Learning NSTL国家科技图书文献中心

Runhang Chen |  Xiao-Yuan Jing... -  《Pattern Recognition and Computer Vision,Part III》 -  Chinese Conference on Pattern Recognition and Computer Vision - 2025, - 289~303 - 共15页

摘要:Exemplar-free class-incremental learning |  (EFCIL) presents a significant challenge, requiring |  models to learn tasks sequentially without accessing |  data from previous tasks. This challenge is |  exacerbated when the initial dataset is insufficient for
关键词: Class-Incremental learning |  Exemplar-Free class-Incremental learning |  Knowledge distillation

10. Non-exemplar Domain Incremental Learning via Cross-Domain Concept Integration NSTL国家科技图书文献中心

Qiang Wang |  Yuhang He... -  《Computer Vision - ECCV 2024,Part XLIV》 -  European Conference on Computer Vision - 2025, - 144~162 - 共19页

摘要:. Therefore, Non-Exemplar Domain Incremental Learning (NEDIL | Existing approaches to Domain Incremental |  Learning (DIL) address catastrophic forgetting by storing |  (DSA) module is proposed for each incremental domain |  and rehearsing exemplars from old domains. However
关键词: Domain incremental learning |  Non-exemplar |  Vision transformer
检索条件Incremental learning
  • 检索词扩展

NSTL主题词

  • NSTL学科导航