全部 |
  • 全部
  • 题名
  • 作者
  • 机构
  • 关键词
  • NSTL主题词
  • 摘要
检索 二次检索 AI检索
外文文献 中文文献
筛选条件:

1. Segmentation of breast lesion using fuzzy thresholding and deep learning NSTL国家科技图书文献中心

Sahaya Pushpa Sarmil... |  Inbamalar T.M.... -  《Computers in Biology and Medicine》 - 2025,184 - 109406~109406 - 共12页

摘要: segment the lesions are: i) Fuzzy C-mean Thresholding |  image, and the fuzzy thresholded image. In this study | © 2024 Elsevier LtdBreast cancer is a major |  cause of morbidity and mortality in women. In breast |  cancer screening, Dynamic Contrast Enhanced Magnetic
关键词: Anisotropic diffusion filter |  Breast lesion |  DeepLabV3+ |  Fuzzy C-Mean cluster |  SegNet |  Thresholding

2. Reservoir Permeability Prediction Method Based on Fuzzy Clustering and Machine Learning NSTL国家科技图书文献中心

Fu, Jianwei |  Chen, Mengling... -  《Chemistry and Technology of Fuels and Oils》 - 2025,60(6) - 1518~1527 - 共10页

摘要: model combined with actual conditions. A Fuzzy C-means |  algorithm based on fuzzy logic is used to cluster the data |  indicators (such as mean square error, determination |  0.73, respectively. It is proved that fuzzy logic | With the in-depth development of oil and gas
关键词: permeability prediction |  fuzzy logic |  machine learning |  support vector machine |  LSTM neural network

3. Predicting lane change risk for intelligent driving vehicles considering driving style NSTL国家科技图书文献中心

Lingyi Meng |  Fuhao Li... -  《Fourth International Conference on Intelligent Traffic Systems and Smart City (ITSSC 2024)》 -  International Conference on Intelligent Traffic Systems and Smart City - 2025, - 134221S.1~134221S.6 - 共6页

摘要: c-mean (FCM). Finally, the vehicle lane-changing |  highD dataset is selected as a sample to cluster |  distance index, and the risk level is classified by fuzzy | Lane change driving is a core behavior for |  adjusting speed and enhancing driving experience, in which
关键词: Driving style |  FCM clustering |  Risk prediction for lane change |  LSTM model

4. Fuzzy c-mean (FCM) integration of geophysical data from an iron-oxide copper gold (IOCG) deposit under thick cover NSTL国家科技图书文献中心

Simon Carter |  Graham Heinson... -  《Exploration geophysics》 - 2024,55(6) - 678~689 - 共12页

摘要: depositgeometry, and drilling is very expensive. Fuzzy c-mean |  and electrical resistivity model data. Fuzzy c-mean |  cluster analyses are undertaken in 2D forgravity data | Geophysical methods depend on a range of |  physical and chemical mechanisms, and eachmethod has
关键词: Fuzzy c-mean clustering |  FCM |  magnetotellurics |  ambient noise tomography |  gravity |  IOCG

5. A Fuzzy Portfolio Model With Cardinality Constraints Based on Differential Evolution Algorithms NSTL国家科技图书文献中心

He, JianDong -  《International Journal of Data Warehousing and Mining》 - 2024,20(1) - ARTN 341268~ - 共14页

摘要:, using fuzzy c -means clustering algorithm, 12 stocks |  numerical calculation examples. At the same time, fuzzy c |  liquidity are considered as trapezoidal fuzzy numbers. The |  possibility mean and mean absolute deviation of expected |  assets, while the possibility mean of expected turnover
关键词: the efficient frontier of the fuzzy portfolio model |  Fuzzy c-means clustering algorithm |  liquidity |  transaction costs |  trapezoidal fuzzy numbers |  OPTIMIZATION

6. A Multi-Stream Deep Neural Network to Predict the Energy Consumption of Smart Home Appliances NSTL国家科技图书文献中心

Mollashahi, Mozhdeh |  Jafari, Pouria... -  《International Journal of Computational Intelligence and Applications》 - 2024,23(2) - 2450003~ - 共16页

摘要: combines the Fuzzy C-Means method with a multi-stream |  the fuzzy-weighted sum of these cluster-specific |  subsets. Each subset is used to train a cluster-specific |  methods in terms of root mean square error and mean |  speed and model performance. Furthermore, the fuzzy
关键词: Deep neural network |  energy consumption |  fuzzy clustering |  smart homes |  MODELS

7. Fuzzy cluster-based multi-node charging strategy in mobile sensor networks NSTL国家科技图书文献中心

Zhu F. |  Lv X.... -  《Ad hoc networks》 - 2024,156(Apr.) - 1.1~1.11 - 共11页

摘要: improved multi-factor fuzzy C-mean clustering algorithm |  fuzzy clustering-based multi-node charging strategy |  (MFCM++) is designed to cluster nodes with similar |  the optimal charging position for each cluster based | , thereby reducing the cluster charging waiting time
关键词: Cuckoo search multi-node model |  Energy replenishment |  MSN |  Multi-factor

8. ML Based Hybrid Computational Intelligence Protocol to Improve Energy Efficiency and Security in Opportunistic Networks (Oppnets) NSTL国家科技图书文献中心

Sachdeva, Rahul |  Dev, Amita -  《Wireless personal communications》 - 2024,139(2) - 1203~1223 - 共21页

摘要: Secure Fuzzy Trust-Based C-Mean Clustering-based |  using the fuzzy c-means clustering technique. The |  the best cluster head selection and security are |  route the cluster head using the secure identify path |  detection. When selecting the cluster head, the most
关键词: Opportunistic network |  Clustering |  Trustiness |  Key distribution |  Tracing and strategy |  Malicious node

9. Fuzzy C-Means Clustering and Improved Arithmetic Optimization Algorithm-Based Layering Cooperative Routing Protocol for UASNs NSTL国家科技图书文献中心

Duoliang Han |  Xiujuan Du... -  《IEEE sensors journal》 - 2024,24(15) - 24810~24824 - 共15页

摘要: introduces a fuzzy C-mean (FCM) algorithm to cluster the |  protocols, a fuzzy C-means clustering and improved |  short network lifetime in existing cluster routing |  cluster head forwarding node, which accelerates the | In underwater acoustic sensor networks (UASNs
关键词: Clustering |  cooperative routing |  fuzzy C-means (FCM) |  improved arithmetic optimization algorithm (AOA) |  network lifetime |  underwater acoustic sensor networks (UASNs) |  Energy consumption |  Sensors |  Routing protocols |  Clustering algorithms...

10. FCM-CSMOTE: Fuzzy C-Means Center-SMOTE NSTL国家科技图书文献中心

Roudani Mohammed |  El Moutaouakil Karim -  《Expert Systems with Application》 - 2024,248(Aug.) - 123406.1~123406.25 - 共25页

摘要: oversampling, called Fuzzy C-Means Center-SMOTE (FCM-CSMOTE | ), which generates synthetic samples in each cluster | , including Geometric Mean (GM), F-Measure (FM), Area Under | Imbalanced class distributions in machine |  learning, where the minority class is often under
关键词: Clustering |  SMOTE |  Unbalanced Data |  Oversampling |  Big Data |  Classification
检索条件Fuzzy C-Mean cluster
  • 检索词扩展

NSTL主题词

  • NSTL学科导航