全部 |
  • 全部
  • 题名
  • 作者
  • 机构
  • 关键词
  • NSTL主题词
  • 摘要
检索 二次检索 AI检索
外文文献 中文文献
筛选条件:

1. A new representation for the solution of the Richards-type fractional differential equation NSTL国家科技图书文献中心

EL-Fassi, Iz-iddine |  Nieto, Juan J.... -  《Mathematical Methods in the Applied Sciences》 - 2025,48(2) - 1519~1529 - 共11页

摘要: differential equation D-alpha y(t) = y(t) center dot (1 + a(t |  ordinary differential equation. |  characterization) of the solution to the Richards-type fractional |  generalizes the results obtained on fractional logistic | Richards in [35] proposed a modification of
关键词: fractional calculus |  fractional derivative |  fractional differential equation |  non-singular kernel |  Richards differential equation |  non‐singular kernel

2. On the solution of nonlinear nonlocal Volterra-Fredholm type hybrid fractional differential equation NSTL国家科技图书文献中心

Devi, Darshana |  Borah, Jayanta -  《Indian Journal of Pure and Applied Mathematics》 - 2025,56(1) - 67~78 - 共12页

摘要: fractional differential equation of order 1 | In this article, we focus on a Caputo hybrid |  nonlocal boundary conditions, which is of the Volterra | -Fredholm type. We investigate the existence of solutions |  using Dhage's fixed point theorem for Banach algebras
关键词: Volterra-Fredholm hybrid fractional differential equation |  Nonlocal boundary conditions |  Solution existence |  Hybrid fixed point theorem

3. Solvability of a fractional differential equation multipoint boundary value problem at resonance in R n NSTL国家科技图书文献中心

Sun, Rongpu |  Bai, Zhanbing -  《Mathematical Methods in the Applied Sciences》 - 2025,48(1) - 1021~1036 - 共16页

摘要: differential equation multipoint boundary value problem at | In this paper, the solvability of a fractional |  resonance in R-n is investigated by utilizing the Mawhin's |  continuation theorem. In order to relax the assumptions of |  matrices in the boundary conditions, the Moore-Penrose
关键词: fractional differential equation in R-n |  Moore-Penrose pseudoinverse matrix |  multipoint boundary value problem |  resonance |  fractional differential equation in ℝn$$ {mathrm{mathbb{R}}}^n $$ |  Moore–Penrose pseudoinverse matrix

4. Determination of two unknown functions of different variables in a time-fractional differential equation NSTL国家科技图书文献中心

Kirane, Mokhtar |  Lopushansky, Andriy... -  《Mathematical Methods in the Applied Sciences》 - 2025,48(4) - 4185~4194 - 共10页

摘要: differential equation of 2b$$ 2b $$-order with the Caputo |  fractional derivative over time and Schwartz-type |  of the Cauchy problem for such an equation, space |  coefficient in the equation are unknown. We find sufficient | We study the inverse problem for a
关键词: fractional derivative |  Green vector-function |  integral condition |  inverse problem |  Schwartz distribution |  Green vector‐function

5. On a mixed partial Caputo derivative and its applications to a hyperbolic partial fractional differential equation NSTL国家科技图书文献中心

Kamocki, Rafal |  Obczynski, Cezary -  《Fractional Calculus and Applied Analysis》 - 2025,28(1) - 1~23 - 共23页

摘要: fractional counterpart of a nonlinear continuous Goursat | We propose an alternative definition of a |  mixed partial derivative in the Caputo sense for |  functions of two variables defined on the rectangle P=[0,a | ]x[0,b] (a > 0,b > 0). We give an integral
关键词: fractional calculus (primary) |  partial mixed fractional integrals and derivatives |  fractional Goursat-Darboux type system |  existence and uniqueness of a solution |  Ulam-Hyers type stability

6. On Ulam type stability of the solution to a ψ -Hilfer abstract fractional functional differential equation NSTL国家科技图书文献中心

Kundu, Sunil |  Bora, Swaroop Nandan -  《Physica Scripta》 - 2025,100(4) - 共13页

摘要: differential equation under feasible hypotheses. By utilizing |  solutions to a psi-Hilfer abstract fractional functional |  fractional-order systems in capturing memory effects and |  fractional orders and weight functions, demonstrating the |  flexibility and robustness of the fractional framework. The
关键词: Fractional differential equation |  psi-Hilfer fractional derivative |  Generalized Gr & ouml;nwall's |  inequality |  Ulam-Hyers stability |  Ulam-Hyers-Rassias stability

7. Solving the fractional nonlinear dispersive K ( m , n , 1) partial differential equation: techniques and applications NSTL国家科技图书文献中心

Alzahrani, Abdulrahm... -  《Physica Scripta》 - 2025,100(3) - 共16页

摘要: fractional differential equation problems with diverse |  fractional differential equations, and the MRPSM gives a |  fractional nonlinear dispersive K(m,n,1) equations using |  MRPSM are adequate for solving the fractional | This paper presents an in-depth analysis of
关键词: Mohand transform iterative method |  fractional order differential equation |  Caputo operator

8. Existence and multiplicity for fractional differential equations with m(ξ)-Kirchhoff type-equation NSTL国家科技图书文献中心

Feitosa, Everson F. ... |  Sousa, J. Vanterler ...... -  《Computational and Applied Mathematics》 - 2025,44(1) - 共24页

摘要: differential equations with m(xi)-Kirchhoff-type equation. |  appropriate fractional space setting. In this sense, using |  weak solutions for a new class of fractional | In this paper, we first investigate the Palais | -Smale compactness condition of the energy functional
关键词: Fractional differential equations |  m(xi)-Kirchhoff equation |  Existence |  Multiplicity

9. On boundary value problem of the nonlinear fractional partial integro-differential equation via inverse operators NSTL国家科技图书文献中心

Li, Chenkuan -  《Fractional Calculus and Applied Analysis》 - 2025,28(1) - 386~410 - 共25页

摘要:-differential equation with boundary conditions. Our analysis |  new nonlinear fractional partial integro |  relies on an equivalent implicit integral equation in | . Finally, we consider the generalized fractional wave |  equation in Rndocumentclass[12pt]{minimal} usepackage
关键词: Fractional calculus (primary) |  Partial integro-differential equation |  Banach's contractive principle |  Multivariate Mittag-Leffler function |  Inverse operator |  Leray-Schauder's fixed point theorem |  Generalized fractional wave equation

10. Existence and k-Mittag-Leffler-Ulam stabilities of a Volterra integro-differential equation via ( k ,ρ)-Hilfer fractional derivative NSTL国家科技图书文献中心

Lemnaouar, M. R. -  《Mathematical Methods in the Applied Sciences》 - 2025,48(4) - 4723~4739 - 共17页

摘要: for an implicit Pantograph fractional differential |  equation that incorporates the (k,rho)-Hilfer derivative | In this paper, we aim to study the existence |  and two types of k-Mittag-Leffler Ulam stabilities | . To establish the existence and uniqueness of
关键词: Volterra integro-differential equation |  k-Mittag-Ulam-Hyers stability |  k-Mittag-Ulam-Hyers-Rassias stability |  (k,rho)-Hilfer fractional derivative |  k$$ k $$‐Mittag–Ulam–Hyers stability |  k$$ k $$‐Mittag–Ulam–Hyers–Rassias stability |  (k,ϱ)$$ left(k,varrho right) $$‐Hilfer fractional derivative |  Volterra integro‐differential equation
检索条件Fractional differential equation

NSTL主题词

  • NSTL学科导航