全部 |
  • 全部
  • 题名
  • 关键词
  • NSTL主题词
  • 摘要
  • 会议名称
  • 论文-出处
  • 论文-作者
  • 论文-机构
  • 论文-DOI
  • 会议-出版者
  • 会议-出版地
  • 会议-主编
  • 会议-主办单位
  • 会议-举办地
  • ISSN
  • EISSN
  • ISBN
  • EISBN
检索 搜索会议录 二次检索 AI检索
外文文献 中文文献
筛选条件:

1. From Explanation Correctness to Explanation Goodness: Only Provably Correct Explanations Can Save the World NSTL国家科技图书文献中心

Maike Schwammberger -  《Bridging the Gap Between AI and Reality》 -  International Conference on Bridging the Gap between AI and Reality - 2025, - 307~317 - 共11页

摘要: stakeholder-tailored explanation can be provided in a | Explainability Engineering gets evermore |  important in the era of self-learning and automated |  systems. We motivate the necessity for interdisciplinary |  research to engineer verifiably correct and good
关键词: Self-explainable software systems |  Explanation correctness |  Explanation goodness |  EXplainable artificial intelligence |  Trustworthy systems

2. Distribution-Aligned Sequential Counterfactual Explanation with Local Outlier Factor NSTL国家科技图书文献中心

Shoki Yamao |  Ken Kobayashi... -  《PRICAI 2024,Part I》 -  Pacific Rim International Conference on Artificial Intelligence - 2025, - 243~256 - 共14页

摘要:Sequential counterfactual explanation is one |  of the counter-factual explanation methods |  counterfactual explanation method that generates a realistic |  suggesting how to sequentially change the input feature |  vector to obtain the desired prediction result from a
关键词: Counterfactual explanation |  Local outlier factor |  Explainable machine learning

3. Graph Neural Network Causal Explanation via Neural Causal Models NSTL国家科技图书文献中心

Arman Behnam |  Binghui Wang -  《Computer Vision - ECCV 2024,Part LXI》 -  European Conference on Computer Vision - 2025, - 410~427 - 共18页

摘要: GNN explainers in exact groundtruth explanation | Graph neural network (GNN) explainers identify |  the important subgraph that ensures the prediction |  for a given graph. Until now, almost all GNN |  explainers are based on association, which is prone to
关键词: Graph neural network explanation |  Neural causal model

4. On Spectral Properties of Gradient-Based Explanation Methods NSTL国家科技图书文献中心

Amir Mehrpanah |  Erik Englesson... -  《Computer Vision - ECCV 2024,Part LXXXVII》 -  European Conference on Computer Vision - 2025, - 282~299 - 共18页

摘要: spectral perspectives to formally analyze explanation |  choice of perturbation hyperparameters in explanation | Understanding the behavior of deep networks is |  crucial to increase our confidence in their results | . Despite an extensive body of work for explaining their
关键词: Probabilistic machine learning |  Gradient-based explanation methods |  Probabilistic pixel attribution techniques |  Explainability |  Deep neural networks |  Spectral analysis

5. Towards Reliable Drift Detection and Explanation in Text Data NSTL国家科技图书文献中心

Robert Feldhans |  Barbara Hammer -  《Intelligent Data Engineering and Automated Learning - IDEAL 2024,Part I》 -  International Conference on Intelligent Data Engineering and Automated Learning - 2025, - 301~312 - 共12页

摘要:When delivered to the market, machine learning |  models face new data which are possibly subject to |  novel characteristics - a phenomenon known as concept |  drift. As this might lead to performance degradation | , it is necessary to detect such drift and, if
关键词: Drift explanation |  Text data |  Transformer |  Visualization

6. Transparency vs Explanation of Machine Learning Algorithms: Perspectives from Recent Legal Proceedings NSTL国家科技图书文献中心

Uchenna Nnawuchi |  Carlisle George... -  《Progress in Artificial Intelligence,Part I》 -  EPIA Conference on Artificial Intelligence - 2025, - 270~283 - 共14页

摘要: right to explanation to address ML opacity, while |  and explanation within the GDPR's regulatory | , the lack of an explicit right to explanation has led | , explanation, and individual rights intersect in the realm of | The extensive use of Machine Learning (ML
关键词: Machine learning |  Right to explanation |  Transparency |  Automated decision-making |  GDPR

7. The Right to an Explanation Under the GDPR and the AI Act NSTL国家科技图书文献中心

Bjorn Aslak Juliusse... -  《MultiMedia Modeling,Part IV》 -  International Conference on MultiMedia Modeling - 2025, - 184~197 - 共14页

摘要:, focusing on the right to explanation for individual |  explanation in automated decision-making processes | The article provides a comprehensive overview |  of European regulations, the GDPR and the AI Act |  decisions inferred from high-risk AI systems and automated
关键词: The right to an explanation |  EU law |  XAI

8. Causal Explanation of Graph Neural Networks NSTL国家科技图书文献中心

Hichem Debbi -  《Intelligent Data Engineering and Automated Learning - IDEAL 2024,Part I》 -  International Conference on Intelligent Data Engineering and Automated Learning - 2025, - 277~288 - 共12页

摘要: explanatory subgraphs is not sufficient explanation tool |  this regard, we propose a causal explanation |  with existing explanation framework for GNNs, but | Graph Neural Networks (GNNs) are currently |  used in many real-world applications. With this
关键词: Graph neural networks (GNNs) |  Causality |  Explainability |  Counterfactuals

9. Measuring Fairness in AI Explanations with LEADR: Local Explanation Amplification Disparity Ratio NSTL国家科技图书文献中心

Niloufar Shoeibi |  Jonathan DeGange... -  《Advances in Practical Applications of Agents,Multi-Agent Systems,and Digital Twins》 -  International Conference on Practical Applications of Agents and Multi-Agent Systems - 2025, - 252~263 - 共12页

摘要:, the Local Explanation Amplification Disparity Ratio | We investigate the fairness of local |  explanations in AI models by comparing the mean explanations |  for privileged and unprivileged groups across |  various datasets and model types. Specifically, we train
关键词: Fair XAI |  Fair local AI explanation |  Bias |  Fairness |  XAI |  Bias amplification

10. Good Teachers Explain: Explanation-Enhanced Knowledge Distillation NSTL国家科技图书文献中心

Amin Parchami-Araghi |  Moritz Bohle... -  《Computer Vision - ECCV 2024,Part LXXIII》 -  European Conference on Computer Vision - 2025, - 293~310 - 共18页

摘要: that our proposed 'explanation-enhanced' KD (e~2KD | Knowledge Distillation (KD) has proven |  effective for compressing large teacher models into |  smaller student models. While it is well known that |  student models can achieve similar accuracies as the
关键词: Model compression |  Faithful distillation |  Interpretability
检索条件Explanation
  • 检索词扩展

NSTL主题词

  • NSTL学科导航