全部 |
  • 全部
  • 题名
  • 作者
  • 机构
  • 关键词
  • NSTL主题词
  • 摘要
检索 二次检索 AI检索
外文文献 中文文献
筛选条件:

1. Matryoshka: Exploiting the Over-Parametrization of Deep Learning Models for Covert Data Transmission NSTL国家科技图书文献中心

Xudong Pan |  Mi Zhang... -  《IEEE Transactions on Pattern Analysis and Machine Intelligence》 - 2025,47(2) - 663~678 - 共16页

摘要:) data stored in local data centers becomes a key |  data even with no exposed interface. Our attack |  model for covert transmission of secret models which |  memorize the information of private ML data that |  transmit over 10,000 real-world data samples within a
关键词: Data models |  Training |  Predictive models |  Training data |  Computational modeling |  Task analysis |  Data privacy

2. Diffusion Models as Data Mining Tools NSTL国家科技图书文献中心

Ioannis Siglidis |  Aleksander Holynski... -  《Computer Vision - ECCV 2024,Part LXI》 -  European Conference on Computer Vision - 2025, - 393~409 - 共17页

摘要: models trained for image synthesis as tools for visual |  data mining. Our insight is that since contemporary |  generative models learn an accurate representation of their |  training data, we can use them to summarize the data by |  after finetuning conditional diffusion models to
关键词: Visual data mining |  Diffusion models

3. Discovering ship maneuvering models from data NSTL国家科技图书文献中心

Agus Hasan -  《Journal of marine science and technology》 - 2025,30(1) - 255~267 - 共13页

摘要: discover ship maneuvering models from data, leveraging |  the maneuvering models. Through extensive numerical |  approach in solving system identification and data-driven |  to advancing data-driven discovery of ship | In this paper, we introduce a methodology to
关键词: Ship dynamics |  Maneuvering models |  Data-driven discovery

4. Can Large Language Models Aid in Annotating Speech Emotional Data? Uncovering New Frontiers [Research Frontier] NSTL国家科技图书文献中心

Siddique Latif |  Muhammad Usama... -  《IEEE computational intelligence magazine》 - 2025,20(1) - 66~77 - 共12页

摘要: recognition (SER) models, state-of-the-art deep learning (DL |  of annotated data. The advent of large language |  models (LLMs) has revolutionised our understanding of |  ChatGPT, to annotate abundant speech data with the goal |  work achieves improved results through data
关键词: Deep learning |  Emotion recognition |  Annotations |  Large language models |  Face recognition |  Natural languages |  Speech recognition |  Data augmentation |  Chatbots |  Data models

5. Solar Panels Segmentation in Remote Sensing Data Using Segment Anything Models 2 and 2.1 NSTL国家科技图书文献中心

Osher Rafaeli |  Tal Svoray... -  《IEEE geoscience and remote sensing letters》 - 2025,22 - 1~5 - 共5页

摘要: RGB aerial imagery. The study evaluates these models |  achieving reasonable performance in low-resolution data |  segmentation in high-resolution data. This research details |  robustness of user-prompted image segmentation models. | This letter provides insights on the
关键词: Image segmentation |  Image resolution |  Lighting |  YOLO |  Computational modeling |  Training |  Data models |  Accuracy |  Atmospheric modeling |  Adaptation models

6. Utilizing Neurons to Interrogate Cancer: Integrative Analysis of Cancer Omics Data With Deep Learning Models NSTL国家科技图书文献中心

Raid Halawani |  Michael Buchert... -  《IEEE reviews in biomedical engineering》 - 2025,18 - 281~299 - 共19页

摘要:-omics cancer genomics data. In recent years, deep |  large cancer genomics data and has the potential to |  learning models in basic cancer omics research, including |  cancer omics data and the importance of cross-platform |  data integration. The paper provides insights into
关键词: Cancer |  Bioinformatics |  Deep learning |  DNA |  Sequential analysis |  Biological system modeling |  Epigenetics |  Tumors |  Transcriptomics |  Data models

7. Conditional Denoising Diffusion Probabilistic Models for Data Reconstruction Enhancement in Wireless Communications NSTL国家科技图书文献中心

Mehdi Letafati |  Samad Ali... -  《IEEE Transactions on Machine Learning in Communications and Networking》 - 2025,3 - 133~146 - 共14页

摘要: probabilistic models (CDiffs) are proposed to enhance the data |  underlying mechanism of diffusion models is to decompose |  the data generation process over the so-called |  leverage the generative prior of diffusion models in |  information signal to help enhance data reconstruction. The
关键词: Diffusion models |  Wireless communication |  Noise reduction |  Image reconstruction |  Vectors |  Diffusion processes |  Signal to noise ratio |  Gaussian distribution |  Receivers |  Data models

8. Data Fusion and Models Integration for Enhanced Semantic Segmentation in Remote Sensing NSTL国家科技图书文献中心

Xiaorui Dong |  Jiansheng Li... -  《IEEE journal of selected topics in applied earth observations and remote sensing》 - 2025,18 - 7134~7151 - 共18页

摘要:, we propose a novel data fusion method for remote |  sensing data from different sources and segmentation |  and complexity of different remote sensing data but |  efficient semantic segmentation models. | Remote sensing semantic segmentation is a key
关键词: Remote sensing |  Semantic segmentation |  Data models |  Training |  Benchmark testing |  Deep learning |  Data integration |  Semantics |  Data mining |  Biological system modeling

9. Enhancing Recipe Retrieval with Foundation Models: A Data Augmentation Perspective NSTL国家科技图书文献中心

Fangzhou Song |  Bin Zhu... -  《Computer Vision - ECCV 2024,Part LI》 -  European Conference on Computer Vision - 2025, - 111~127 - 共17页

摘要: utilizing foundation models for data augmentation |  models (i.e., Llama2 and SAM), we propose to augment |  make full use of the augmented data, we introduce |  Data Augmented Retrieval framework (DAR) to enhance |  the original and augmented data pairs, which assigns
关键词: Recipe retrieval |  Data augmentation |  Foundation models

10. Industrial Process Soft Sensing Based on Bidirectional Optimization Learning of Data Augmentation and Prediction Models Under Limited Data NSTL国家科技图书文献中心

Li, He |  Wang, Zhaojing... -  《IEEE Transactions on Instrumentation and Measurement》 - 2025,74(Pt.1) - 1001211.1~1001211.11 - 共11页

摘要: dependency between data generation and predictive models, a |  soft sensing models. Consequently, this study |  develops a bidirectional optimization learning of data |  extraction process of soft sensing models, a nonlinear |  loss function flow between the two models. This
关键词: Soft sensors |  Data models |  Predictive models |  Data augmentation |  Accuracy |  Optimization |  Feature extraction |  Decoding |  Correlation |  Vectors...
检索条件Data models
  • 检索词扩展

NSTL主题词

  • NSTL学科导航