全部 |
  • 全部
  • 题名
  • 作者
  • 机构
  • 关键词
  • NSTL主题词
  • 摘要
检索 二次检索 AI检索
外文文献 中文文献
筛选条件:

1. Fusion of data dimensionality reduction algorithms baced on category representation theory NSTL国家科技图书文献中心

Xiaoxiang Xu |  Fanzhang Li... -  《Fourth International Conference on Computer Vision,Application,and Algorithm (CVAA 2024)》 -  International Conference on Computer Vision,Application,and Algorithm - 2025, - 1348633.1~1348633.10 - 共10页

摘要: data dimensionality reduction fusion representation |  study the fusion representation of data dimensionality |  representation for data dimensionality reduction and provide a |  proposed a data dimensionality reduction fusion |  representation algorithm based on a data dimensionality
关键词: Category representation |  Data dimensionality reduction |  Data dimensionality reduction fusion representation

2. Multi-Site Wireless Channel Charting Through Latent Space Alignment NSTL国家科技图书文献中心

Yamil Vindas |  Maxime Guillaud -  《2024 IEEE 25th International Workshop on Signal Processing Advances in Wireless Communications》 -  IEEE International Workshop on Signal Processing Advances in Wireless Communications - 2024, - 826~830 - 共5页

摘要: propagation. By applying dimensionality reduction to channel |  classical dimensionality reduction metrics using measured | -dimensional representation of the channel state, which is |  latent space, effectively performing the fusion of |  data, as well as their degree of distributedness.
关键词: Wireless communication |  Dimensionality reduction |  Training |  Measurement |  Base stations |  Focusing |  Distributed databases |  Signal processing |  Data mining |  Space stations

3. RGB-Infrared Image Fusion and Classification based on Tensor Decomposition NSTL国家科技图书文献中心

Ke Liu |  Hang Li... -  《Conference on Spectral Technology and Applications (CSTA 2024),Part Two of Two Parts》 -  Conference on Spectral Technology and Applications - 2024, - 共9页

摘要:, dimensionality reduction, target detection, spectral unmixing |  (RGB) and infrared (IR) data fusion and |  data source. Consequently, remote sensing images |  from multimodal data has facilitated a more |  representation methods, and multi-scale, multi-feature
关键词: Remote sensing image |  Multimodal fusion |  Tensor decomposition |  Object classification

4. Efflex: Efficient and Flexible Pipeline for Spatio-Temporal Trajectory Graph Modeling and Representation Learning NSTL国家科技图书文献中心

Ming Cheng |  Ziyi Zhou... -  《2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops》 -  IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops - 2024, - 2546~2555 - 共10页

摘要: construction, marking a leap in dimensionality reduction | In the landscape of spatio-temporal data |  analytics, effective trajectory representation learning is |  transformative graph modeling and representation learning of |  neighbors (KNN) algorithm with feature fusion for graph
关键词: Representation learning |  Dimensionality reduction |  Accuracy |  Geology |  Pipelines |  Nearest neighbor methods |  Feature extraction

5. 3D seismic mask auto encoder: Seismic inversion using transformer-based reconstruction representation learning NSTL国家科技图书文献中心

Dou Y. |  Li K. -  《Computers and geotechnics》 - 2024,169(May) - 1.1~1.14 - 共14页 - 被引量:1

摘要:) Aggregated dimensionality reduction encoding to handle |  impedance from seismic data is a crucial step in reservoir |  characterization. While data-driven impedance inversion based on |  amounts of unlabeled data can be transferred to |  downstream tasks with minimal labeled data. However
关键词: Pretrained foundation models (PFMs) |  Representation learning |  Seismic data |  Seismic inversion |  Self-supervised learning

6. Highly compressed image representation for classification and content retrieval NSTL国家科技图书文献中心

Lazewski, Stanislaw |  Cyganek, Boguslaw -  《Integrated Computer-Aided Engineering》 - 2024,31(3) - 267~284 - 共18页

摘要:, which leads to a significant reduction in |  dimensionality. Further on, by applying a floating-point |  obtained by simple output fusion of ResNet-50. As a |  result, the representation of a single image from the |  fusion of the last ResNet-50 residual block, we achieve
关键词: Image classification |  content-based image recognition (CBIR) |  deep semantic features |  PCA-ResFeats |  ResNet-50 |  POINT |  NETWORK |  SCALE

7. A journey from univariate to multivariate functional time series: A comprehensive review NSTL国家科技图书文献中心

Hossein Haghbin |  Mehdi Maadooliat -  《Wiley interdisciplinary reviews. Computational statistics》 - 2024,16(1) - n/a~n/a - 共22页

摘要: explore strategies for dimensionality reduction |  forecasting time‐dependent data with functional attributes |  into representation, estimation, and modeling |  the intricacies posed by high‐dimensional data. We |  refinement and innovation. Through a fusion of multivariate
关键词: forecasting |  functional principal component analysis |  functional time series |  multivariate functional time series

8. Heterogeneous Cuckoo Search-Based Unsupervised Band Selection for Hyperspectral Image Classification NSTL国家科技图书文献中心

Meng Wu |  Xianfeng Ou... -  《IEEE Transactions on Geoscience and Remote Sensing》 - 2024,62 - 1~16 - 共16页 - 被引量:1

摘要: relevant features from such high-dimensional data. Band |  selection (BS), one of the most fundamental dimensionality |  reduction (DR) techniques, removes redundant bands while |  self-representation (MGSR), neighborhood grouping |  graph fusion (RMGF).
关键词: Matched filters |  Hyperspectral imaging |  Classification algorithms |  Support vector machines |  Optimization |  Dimensionality reduction |  Correlation

9. MOVNG: Applied a Novel Sparse Fusion Representation into GTCN for Pan-Cancer Classification and Biomarker Identification NSTL国家科技图书文献中心

Xin Chen |  Yun Tie... -  《Advanced Intelligent Computing Technology and Applications: 19th International Conference, ICIC 2023, Zhengzhou, China, August 10-13, 2023, Proceedings, Part I》 -  International Conference on Intelligent Computing - 2023, - 604~615 - 共12页

摘要: dimensionality, and small sample sizes of this data pose |  representation. Dimension reduction is also important to avoid |  samples in omics data fusion. Thus, we proposed a novel |  sparse fusion representation method based on VAE-NN |  inter- and intra-omics data fusion in high-level
关键词: Multi-omics data |  Pan-cancer classification |  Biomarker identification |  Graph tree convolution networks |  Spare fusion representation

10. Dimensionality Reduction Visualization Analysis of Financial Data based on Semantic Feature Group NSTL国家科技图书文献中心

Ke Wang |  Menghua Luo... -  《Third International Conference on Machine Learning and Computer Application (ICMLCA 2022), Part One of Two Parts: 16-18 December 2022.Shenyang, China》 -  International Conference on Machine Learning and Computer Application - 2023, - 126362J.1~126362J.7 - 共7页

摘要: verified by comparing the data dimensionality reduction | , dimensionality reduction algorithms and principal component | With the continuous development of data |  science and financial technology, financial data |  in the field of financial data analysis today. From
关键词: Semantic feature group |  Visual analytics |  Dimensionality Reduction Visualization |  Financial Data Visualization |  Credit Card Data Analysis
检索条件Data dimensionality reduction fusion representation
  • 检索词扩展

NSTL主题词

  • NSTL学科导航