全部 |
  • 全部
  • 题名
  • 关键词
  • NSTL主题词
  • 摘要
  • 论文-出处
  • 论文-作者
  • 论文-机构
  • 论文-DOI
  • 期刊-出版者
  • 期刊-出版地
  • 期刊-主编
  • ISSN
  • EISSN
  • ISBN
  • EISBN
检索 搜索期刊 二次检索 AI检索
外文文献 中文文献
筛选条件:

1. Binarized Simplicial Convolutional Neural Networks NSTL国家科技图书文献中心

Yan, Yi |  Kuruoglu, Ercan Engi... -  《Neural Networks》 - 2025,183 - Article 106928~Article 106928 - 共11页

摘要: triangles. Simplicial Convolutional Neural Networks (SCNN | Graph Neural Networks have the limitation of |  architecture named Binarized Simplicial Convolutional Neural |  efficiency. In this paper, a novel neural network |  Networks (Bi-SCNN) is proposed based on the combination
关键词: Graph learning |  Graph Neural Networks |  Simplicial complex |  Convolutional Neural Networks |  Binarization

2. TPC track denoising and recognition using convolutional neural networks NSTL国家科技图书文献中心

Gajdos, Matej |  da Luz, Hugo Natal... -  《Computer physics communications》 - 2025,312 - 共9页

摘要: the potential of convolutional neural networks in | The capability of convolutional neural |  networks to remove spurious signals caused by electronic |  of the neural network is described and its |  resulting from the neural network and conventional
关键词: Denoising |  Machine learning |  Convolutional neural networks |  Time projection chambers

3. Self-distillation enhanced adaptive pruning of convolutional neural networks NSTL国家科技图书文献中心

Diao, Huabin |  Li, Gongyan... -  《Pattern Recognition》 - 2025,157 - 共11页

摘要:Convolutional neural networks (CNNs) suffer |  from issues of large parameter size and high |  computational complexity. To address this, we propose an |  adaptive pruning algorithm based on self-distillation | . The algorithm introduces a trainable parameter for
关键词: Convolutional neural networks |  Self-distillation |  Adaptive pruning

4. Toward Efficient Convolutional Neural Networks With Structured Ternary Patterns NSTL国家科技图书文献中心

Christos Kyrkou -  《IEEE transactions on neural networks and learning systems》 - 2025,36(3) - 5810~5817 - 共8页

摘要: for training. Convolutional neural networks |  presents work toward utilizing static convolutional |  custom STeP-based networks that provide good trade-offs | High-efficiency deep learning (DL) models are |  necessary not only to facilitate their use in devices with
关键词: Kernel |  Training |  Quantization (signal) |  Filters |  Neural networks |  Convolutional neural networks |  Convolutional codes

5. Exploiting Gaussian distribution in channel pruning for convolutional neural networks NSTL国家科技图书文献中心

Yuzhou Liu |  Bo Liu... -  《The Journal of Supercomputing》 - 2025,81(5) - 688.1~688.25 - 共25页

摘要: simplifying deep convolutional neural networks (CNNs). The | Channel pruning, as an efficient structured |  pruning method, is widely used for accelerating and |  core of this method lies in selecting a factor to |  evaluate the importance of channels and pruning
关键词: Convolutional neural networks |  Channel pruning |  Gaussian distribution |  Regularization

6. STP-CNN: Selection of transfer parameters in convolutional neural networks NSTL国家科技图书文献中心

Otmane Mallouk |  Nour-Eddine Joudar... -  《Expert systems》 - 2025,42(2) - e13728.1~e13728.18 - 共18页

摘要: transfer learning in convolutional neural networks named |  control exactly which parameters, in each convolutional | Nowadays, transfer learning has shown |  promising results in many applications. However, most deep |  transfer learning methods such as parameter sharing and
关键词: convolutional neural networks |  deep learning |  deep transfer learning |  1-regularization |  proximal algorithms |  transfer learning

7. Boosting Convolutional Neural Networks With Middle Spectrum Grouped Convolution NSTL国家科技图书文献中心

Zhuo Su |  Jiehua Zhang... -  《IEEE transactions on neural networks and learning systems》 - 2025,36(2) - 3436~3449 - 共14页

摘要: efficient deep convolutional neural networks (DCNNs) with | This article proposes a novel module called |  middle spectrum grouped convolution (MSGC) for |  the mechanism of grouped convolution. It explores |  the broad middle spectrum area between channel
关键词: Convolution |  Computational efficiency |  Topology |  Convolutional neural networks |  Computational modeling |  Tensors |  Task analysis

8. CONVOLUTIONAL NEURAL NETWORKS FOR IDENTIFYING PAPILLARY THYROID CANCER HISTOPATHOLOGICAL IMAGE NSTL国家科技图书文献中心

NABILA HUSNA SHABRIN... |  DADANG GUNAWAN... -  《International journal of innovative computing,information and control》 - 2025,21(2) - 565~576 - 共12页

摘要: performance, with one of them being Convolutional Neural |  Networks (CNN). However, there is a noticeable gap in | Artificial intelligence advancements have |  significantly sped up the development of specialized |  algorithms for diagnosing Papillary Thyroid Cancer from
关键词: Artificial intelligence |  Convolutional neural networks |  Histopathological image |  Patch size |  Papillary thyroid cancer |  Transfer learning

9. A concept-aware explainability method for convolutional neural networks NSTL国家科技图书文献中心

Mustafa Kagan Gurkan |  Nafiz Arica... -  《Machine Vision and Applications》 - 2025,36(2) - 33.1~33.17 - 共17页

摘要:Although Convolutional Neural Networks (CNN | ) outperform the classical models in a wide range of Machine |  Vision applications, their restricted interpretability |  and their lack of comprehensibility in reasoning | , generate many problems such as security, reliability, and
关键词: Convolutional neural networks |  Concept-based explanation |  Filter-concept association |  Model comparison via explanations

10. Applying convolutional neural networks for mustard variety recognition NSTL国家科技图书文献中心

Slebioda, Laura |  Zawieja, Bogna -  《Euphytica》 - 2025,221(2) - 共11页

摘要: a Convolutional Neural Network (CNN) model to |  included convolutional layers, batch normalization | The aim of this study was to develop and apply |  recognize and classify white mustard (Sinapis Alba L | .) varieties, addressing the complex task of discriminating
关键词: Agricultural algorithms |  Classification |  Convolutional neural networks |  Mustard |  Variety recognition
检索条件Convolutional neural networks
  • 检索词扩展

NSTL主题词

  • NSTL学科导航