全部 |
  • 全部
  • 题名
  • 关键词
  • NSTL主题词
  • 摘要
  • 论文-出处
  • 论文-作者
  • 论文-机构
  • 论文-DOI
  • 期刊-出版者
  • 期刊-出版地
  • 期刊-主编
  • ISSN
  • EISSN
  • ISBN
  • EISBN
检索 搜索期刊 二次检索 AI检索
外文文献 中文文献
筛选条件:

1. A Gradient-Based Approach to Fast and Accurate Head Motion Compensation in Cone-Beam CT NSTL国家科技图书文献中心

Mareike Thies |  Fabian Wagner... -  《IEEE Transactions on Medical Imaging》 - 2025,44(2) - 1098~1109 - 共12页

摘要:Cone-beam computed tomography (CBCT) systems | , with their flexibility, present a promising avenue |  for direct point-of-care medical imaging | , particularly in critical scenarios such as acute stroke |  assessment. However, the integration of CBCT into clinical
关键词: Image reconstruction |  Measurement |  Computed tomography |  Optimization |  Motion estimation |  Motion compensation |  Geometry |  Estimation |  Stroke (medical condition) |  Motion measurement

2. IGU-Aug: Information-Guided Unsupervised Augmentation and Pixel-Wise Contrastive Learning for Medical Image Analysis NSTL国家科技图书文献中心

Quan Quan |  Qingsong Yao... -  《IEEE Transactions on Medical Imaging》 - 2025,44(1) - 154~164 - 共11页

摘要:Contrastive learning (CL) is a form of self | -supervised learning and has been widely used for various |  tasks. Different from widely studied instance-level |  contrastive learning, pixel-wise contrastive learning mainly |  helps with pixel-wise dense prediction tasks. The
关键词: Contrastive learning |  Task analysis |  Data augmentation |  Semantics |  Training |  Feature extraction |  Image segmentation

3. Multi-Organ Foundation Model for Universal Ultrasound Image Segmentation With Task Prompt and Anatomical Prior NSTL国家科技图书文献中心

Haobo Chen |  Yehua Cai... -  《IEEE Transactions on Medical Imaging》 - 2025,44(2) - 1005~1018 - 共14页

摘要:Semantic segmentation of ultrasound (US | ) images with deep learning has played a crucial role in |  computer-aided disease screening, diagnosis and prognosis | . However, due to the scarcity of US images and small |  field of view, resulting segmentation models are
关键词: Image segmentation |  Anatomical structure |  Ultrasonic imaging |  Imaging |  Computed tomography |  Correlation |  Magnetic resonance imaging |  Probes |  Hospitals |  Deep learning

4. Multi-Modal Federated Learning for Cancer Staging Over Non-IID Datasets With Unbalanced Modalities NSTL国家科技图书文献中心

Kasra Borazjani |  Naji Khosravan... -  《IEEE Transactions on Medical Imaging》 - 2025,44(1) - 556~573 - 共18页

摘要:The use of machine learning (ML) for cancer |  staging through medical image analysis has gained |  substantial interest across medical disciplines. When |  accompanied by the innovative federated learning (FL | ) framework, ML techniques can further overcome privacy
关键词: Data models |  Cancer |  Training |  Distributed databases |  Biomedical imaging |  Federated learning |  Data privacy

5. Learning With Explicit Shape Priors for Medical Image Segmentation NSTL国家科技图书文献中心

Xin You |  Junjun He... -  《IEEE Transactions on Medical Imaging》 - 2025,44(2) - 927~940 - 共14页

摘要:Medical image segmentation is a fundamental |  task for medical image analysis and surgical planning | . In recent years, UNet-based networks have prevailed |  in the field of medical image segmentation. However | , convolutional neural networks (CNNs) suffer from limited
关键词: Shape |  Image segmentation |  Training |  Prototypes |  Medical diagnostic imaging |  Gaussian distribution |  Feature extraction |  Transforms |  Transformers |  Head

6. Self-Supervised Representation Distribution Learning for Reliable Data Augmentation in Histopathology WSI Classification NSTL国家科技图书文献中心

Kunming Tang |  Zhiguo Jiang... -  《IEEE Transactions on Medical Imaging》 - 2025,44(1) - 462~474 - 共13页

摘要:Multiple instance learning (MIL) based whole |  slide image (WSI) classification is often carried out |  on the representations of patches extracted from |  WSI with a pre-trained patch encoder. The |  performance of classification relies on both patch-level
关键词: Data augmentation |  Training |  Representation learning |  Data models |  Histopathology |  Feature extraction |  Supervised learning

7. Generative Adversarial Network With Robust Discriminator Through Multi-Task Learning for Low-Dose CT Denoising NSTL国家科技图书文献中心

Sunggu Kyung |  Jongjun Won... -  《IEEE Transactions on Medical Imaging》 - 2025,44(1) - 499~518 - 共20页

摘要:Reducing the dose of radiation in computed |  tomography (CT) is vital to decreasing secondary cancer |  risk. However, the use of low-dose CT (LDCT) images |  is accompanied by increased noise that can |  negatively impact diagnoses. Although numerous deep
关键词: Noise reduction |  Computed tomography |  Biomedical imaging |  Generators |  Task analysis |  Image restoration |  Multitasking

8. CQformer: Learning Dynamics Across Slices in Medical Image Segmentation NSTL国家科技图书文献中心

Shengjie Zhang |  Xin Shen... -  《IEEE Transactions on Medical Imaging》 - 2025,44(2) - 1043~1057 - 共15页

摘要:Prevalent studies on deep learning-based 3D |  medical image segmentation capture the continuous |  variation across 2D slices mainly via convolution | , Transformer, inter-slice interaction, and time series models | . In this work, via modeling this variation by an
关键词: Image segmentation |  Transformers |  Biomedical imaging |  Three-dimensional displays |  Time series analysis |  Head |  Convolution |  Shape |  Feature extraction |  Decoding

9. ConvexAdam: Self-Configuring Dual-Optimization-Based 3D Multitask Medical Image Registration NSTL国家科技图书文献中心

Hanna Siebert |  Christoph Großbröhme...... -  《IEEE Transactions on Medical Imaging》 - 2025,44(2) - 738~748 - 共11页

摘要:Registration of medical image data requires |  methods that can align anatomical structures precisely |  while applying smooth and plausible transformations | . Ideally, these methods should furthermore operate |  quickly and apply to a wide variety of tasks. Deep
关键词: Optimization |  Feature extraction |  Image registration |  Deformation |  Biomedical imaging |  Correlation |  Costs

10. LOQUAT: Low-Rank Quaternion Reconstruction for Photon-Counting CT NSTL国家科技图书文献中心

Zefan Lin |  Guotao Quan... -  《IEEE Transactions on Medical Imaging》 - 2025,44(2) - 668~684 - 共17页

摘要:Photon-counting computed tomography (PCCT) may |  dramatically benefit clinical practice due to its versatility |  such as dose reduction and material characterization | . However, the limited number of photons detected in each |  individual energy bin can induce severe noise contamination
关键词: Quaternions |  Three-dimensional displays |  Tensors |  Image reconstruction |  Arrays |  Computed tomography |  Photonics
检索条件出处:IEEE Transactions on Medical Imaging

NSTL主题词

  • NSTL学科导航