全部 |
  • 全部
  • 题名
  • 关键词
  • NSTL主题词
  • 摘要
  • 会议名称
  • 论文-出处
  • 论文-作者
  • 论文-机构
  • 论文-DOI
  • 会议-出版者
  • 会议-出版地
  • 会议-主编
  • 会议-主办单位
  • 会议-举办地
  • ISSN
  • EISSN
  • ISBN
  • EISBN
检索 搜索会议录 二次检索 AI检索
外文文献 中文文献
筛选条件:

1. Contribution-Based Low-Rank Adaptation with Pre-training Model for Real Image Restoration NSTL国家科技图书文献中心

Dongwon Park |  Hayeon Kim... -  《Computer Vision - ECCV 2024,Part LXIV》 -  European Conference on Computer Vision - 2025, - 87~105 - 共19页

摘要:Recently, pre-trained model and efficient |  parameter tuning have achieved remarkable success in |  natural language processing and high-level computer |  vision with the aid of masked modeling and prompt |  tuning. In low-level computer vision, however, there
关键词: Efficient fine-tuing |  Low-rank adaptation |  Pre-training

2. Depth-Guided NeRF Training via Earth Mover's Distance NSTL国家科技图书文献中心

Anita Rau |  Josiah Aklilu... -  《Computer Vision - ECCV 2024,Part LXIV》 -  European Conference on Computer Vision - 2025, - 1~17 - 共17页

摘要:Neural Radiance Fields (NeRFs) are trained to |  minimize the rendering loss of predicted viewpoints | . However, the photometric loss often does not provide |  enough information to disambiguate between different |  possible geometries yielding the same image. Previous
关键词: Neural radiance fields |  Depth prediction |  Monocular depth priors |  Earth mover's distance

3. MMEarth: Exploring Multi-modal Pretext Tasks for Geospatial Representation Learning NSTL国家科技图书文献中心

Vishal Nedungadi |  Ankit Kariryaa... -  《Computer Vision - ECCV 2024,Part LXIV》 -  European Conference on Computer Vision - 2025, - 164~182 - 共19页

摘要:The volume of unlabelled Earth observation (EO | ) data is huge, but many important applications lack |  labelled training data. However, EO data offers the |  unique opportunity to pair data from different |  modalities and sensors automatically based on geographic
关键词: Representation learning |  Self-supervised learning |  Multi-modal |  Multi-task |  Masked autoencoder |  Earth observation |  Remote sensing |  Satellite images |  Sentinel-2

4. Elucidating the Hierarchical Nature of Behavior with Masked Autoencoders NSTL国家科技图书文献中心

Lucas Stoffl |  Andy Bonnetto... -  《Computer Vision - ECCV 2024,Part LXIV》 -  European Conference on Computer Vision - 2025, - 106~125 - 共20页

摘要:Natural behavior is hierarchical. Yet, there |  is a paucity of benchmarks addressing this aspect | . Recognizing the scarcity of large-scale hierarchical |  behavioral benchmarks, we create a novel synthetic |  basketball playing benchmark (Shot7M2). Beyond synthetic
关键词: Masked autoencoder |  Action segmentation |  Behavioral benchmarks |  Synthetic movement data |  Hierarchical representation learning |  Behavioral hierarchy

5. SAH-SCI: Self-supervised Adapter for Efficient Hyperspectral Snapshot Compressive Imaging NSTL国家科技图书文献中心

Haijin Zeng |  Yuxi Liu... -  《Computer Vision - ECCV 2024,Part LXIV》 -  European Conference on Computer Vision - 2025, - 311~328 - 共18页

摘要:Hyperspectral image (HSI) reconstruction is |  vital for recovering spatial-spectral information from |  compressed measurements in coded aperture snapshot spectral |  imaging (CASSI) systems. Despite the effectiveness of |  end-to-end and deep unfolding methods, their
关键词: Compressive imaging |  Self-supervised learning |  Adapter

6. LITA: Language Instructed Temporal-Localization Assistant NSTL国家科技图书文献中心

De-An Huang |  Shijia Liao... -  《Computer Vision - ECCV 2024,Part LXIV》 -  European Conference on Computer Vision - 2025, - 202~218 - 共17页

摘要:There has been tremendous progress in |  multimodal Large Language Models (LLMs). Recent works have |  extended these models to video input with promising |  instruction following capabilities. However, an important |  missing piece is temporal localization. These models
关键词: Large language models |  Video understanding |  Temporal localization

7. Evolving Interpretable Visual Classifiers with Large Language Models NSTL国家科技图书文献中心

Mia Chiquier |  Utkarsh Mall... -  《Computer Vision - ECCV 2024,Part LXIV》 -  European Conference on Computer Vision - 2025, - 183~201 - 共19页

摘要:Multimodal pre-trained models, such as CLIP | , are popular for zero-shot classification due to |  their open-vocabulary flexibility and high performance | . However, vision-language models, which compute |  similarity scores between images and class labels, are
关键词: Visual recognition |  Interpretable representations

8. INTRA: Interaction Relationship-A ware Weakly Supervised Affordance Grounding NSTL国家科技图书文献中心

Ji Ha Jang |  Hoigi Seo... -  《Computer Vision - ECCV 2024,Part LXIV》 -  European Conference on Computer Vision - 2025, - 18~34 - 共17页

摘要:Affordance denotes the potential interactions |  inherent in objects. The perception of affordance can |  enable intelligent agents to navigate and interact with |  new environments efficiently. Weakly supervised |  affordance grounding teaches agents the concept of
关键词: Affordance grounding |  Weak supervision |  Exocentric image |  Contrastive learning |  Interaction relation

9. Diagnosing and Re-learning for Balanced Multimodal Learning NSTL国家科技图书文献中心

Yake Wei |  Siwei Li... -  《Computer Vision - ECCV 2024,Part LXIV》 -  European Conference on Computer Vision - 2025, - 71~86 - 共16页

摘要:To overcome the imbalanced multimodal learning |  problem, where models prefer the training of specific |  modalities, existing methods propose to control the |  training of uni-modal encoders from different |  perspectives, taking the inter-modal performance discrepancy
关键词: Multimodal learning |  Learning state diagnosing |  Re-learning

10. DEPICT: Diffusion-Enabled Permutation Importance for Image Classification Tasks NSTL国家科技图书文献中心

Sarah Jabbour |  Gregory Kondas... -  《Computer Vision - ECCV 2024,Part LXIV》 -  European Conference on Computer Vision - 2025, - 35~51 - 共17页

摘要:We propose a permutation-based explanation |  method for image classifiers. Current image-model |  explanations like activation maps are limited to instance | -based explanations in the pixel space, making it |  difficult to understand global model behavior. In contrast
关键词: Permutation importance |  Explainable AI |  Diffusion models
检索条件出处:Computer Vision - ECCV 2024,Part LXIV
  • 检索词扩展

NSTL主题词

  • NSTL学科导航