全部 |
  • 全部
  • 题名
  • 作者
  • 机构
  • 关键词
  • NSTL主题词
  • 摘要
检索 二次检索 AI检索
外文文献 中文文献
筛选条件:

1. A tool based on Bayesian networks for supporting geneticists in plant improvement by controlled pollination SCIE Web of Science核心 SCOPUS Scopus数据库 NSTL国家科技图书文献中心

Jens D. Nielsen |  Antonio Salmeron... -  《International journal of approximate reasoning》 - 2014,55(1 Pt.1) - 74~83 - 共10页

摘要:In this paper we describe a system designed for assisting geneticists in vegetal genetic improvement tasks. The system is based on the use of Bayesian networks. It has been developed under the industr...
关键词: Bayesian networks |  Inference |  Learning |  Vegetal genetic improvement |  Decision support systems

2. Modelling and inference with Conditional Gaussian Probabilistic Decision Graphs SCOPUS Scopus数据库 SCIE Web of Science核心 NSTL国家科技图书文献中心

Jens D. Nielsen |  Jose A. Gamez... -  《International journal of approximate reasoning》 - 2012,53(7) - 929~945 - 共17页

摘要:Probabilistic Decision Graphs (PDGs) are probabilistic graphical models that represent a factorisation of a discrete joint probability distribution using a "decision graph"-like structure over local m...
关键词: probabilistic decision graphs |  conditional gaussian distribution |  hybrid graphical models |  inference

3. LEARNING BAYESIAN NETWORKS FOR REGRESSION FROM INCOMPLETE DATABASES SCIE Web of Science核心 NSTL国家科技图书文献中心

ANTONIO FERNANDEZ |  JENS D. NIELSEN... -  《International journal of uncertainty, fuzziness and knowledge-based systems: IJUFKS》 - 2010,18(1) - 69~ - 共18页

摘要:In this paper we address the problem of inducing Bayesian network models for regression from incomplete databases. We use mixtures of truncated exponentials (MTEs) to represent the joint distribution ...
关键词: bayesian networks |  regression |  mixtures of truncated exponentials |  missing data

4. Structural-EM for learning PDG models from incomplete data SCIE Web of Science核心 NSTL国家科技图书文献中心

Jens D. Nielsen |  Rafael Rumi... -  《International journal of approximate reasoning》 - 2010,51(5) - 515~530 - 共16页

摘要:Probabilistic Decision Graphs (PDGs) are a class of graphical models that can naturally encode some context specific independencies that cannot always be efficiently captured by other popular models, ...
关键词: machine learning |  graphical models |  learning from incomplete data

5. The PDG-Mixture Model for Clustering NSTL国家科技图书文献中心

M. Julia Flores |  Jose A. Gamez... -  《Data Warehousing and Knowledge Discovery》 -  International Conference on Data Warehousing and Knowledge Discovery (DaWak 2009) - 2009, - 378~389 - 共12页

摘要:Within data mining, clustering can be considered the most important unsupervised learning problem which deals with finding a structure in a collection of unlabeled data. Generally, clustering refers t...
关键词: Probabilistic graphical models;;Clustering;;Data mining
NSTL主题词: Cluster Analysis |  Mixture models

6. Learning probabilistic decision graphs SCIE Web of Science核心 NSTL国家科技图书文献中心

Manfred Jaeger |  Jens D. Nielsen... -  《International journal of approximate reasoning》 - 2006,42(1/2) - 84~100 - 共17页

摘要:Probabilistic decision graphs (PDGs) are a representation language for probability distributions based on binary decision diagrams. PDGs can encode (context-specific) independence relations that canno...
关键词: probabilistic models |  learning

7. Conditional Gaussian Probabilistic Decision Graphs NSTL国家科技图书文献中心

Jens D. Nielsen |  Antonio Salmeron -  《Proceedings of the Twenty-Third International Florida Artificial Intelligence Research Society Conference》 -  International Florida Artificial Intelligence Research Society Conference - 2010, - 549~554 - 共6页

摘要:Probabilistic decision graphs (PDGs) are probabilistic graphical models that represent a factorisation of a discrete joint probability distribution using a "decision graph" - like structure over local...

8. On Local Optima in Learning Bayesian Networks NSTL国家科技图书文献中心

Jens D. Nielsen |  Tomas Kocka... -  《Nineteenth Conference (2003) on Uncertainty in Artificial Intelligence ; Aug 7-10, 2003; Acapulco, Mexico》 -  Nineteenth Conference (2003) on Uncertainty in Artificial Intelligence ; Aug 7-10, 2003; Acapulco, Mexico - 2003, - 435~442 - 共8页

摘要:This paper proposes and evaluates the k-greedy equivalence search algorithm (KES) for learning Bayesian networks (BNs) from complete data. The main characteristic of KES is that it allows a trade-off ...
检索条件作者:Jens D. Nielsen

NSTL主题词

  • NSTL学科导航